Home
Class 14
MATHS
What is the value of lamda for which the...

What is the value of `lamda` for which the vectors `hat(i) - hat(j) + hat(k), 2hat(i) + hat(j)- hat(k) and lamda hat(i) - hat(j)+ lamda (k)` are coplanar

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) for which the vectors \( \hat{i} - \hat{j} + \hat{k} \), \( 2\hat{i} + \hat{j} - \hat{k} \), and \( \lambda \hat{i} - \hat{j} + \lambda \hat{k} \) are coplanar, we can follow these steps: ### Step 1: Write down the vectors The vectors are: 1. \( \mathbf{A} = \hat{i} - \hat{j} + \hat{k} \) 2. \( \mathbf{B} = 2\hat{i} + \hat{j} - \hat{k} \) 3. \( \mathbf{C} = \lambda \hat{i} - \hat{j} + \lambda \hat{k} \) ### Step 2: Form the matrix of coefficients We can represent these vectors in a matrix form, where each row corresponds to the coefficients of \( \hat{i} \), \( \hat{j} \), and \( \hat{k} \): \[ \begin{vmatrix} 1 & -1 & 1 \\ 2 & 1 & -1 \\ \lambda & -1 & \lambda \end{vmatrix} \] ### Step 3: Calculate the determinant To find the value of \( \lambda \) for which these vectors are coplanar, we need to set the determinant of this matrix to zero: \[ \begin{vmatrix} 1 & -1 & 1 \\ 2 & 1 & -1 \\ \lambda & -1 & \lambda \end{vmatrix} = 0 \] ### Step 4: Expand the determinant Using the cofactor expansion along the first row: \[ = 1 \cdot \begin{vmatrix} 1 & -1 \\ -1 & \lambda \end{vmatrix} - (-1) \cdot \begin{vmatrix} 2 & -1 \\ \lambda & \lambda \end{vmatrix} + 1 \cdot \begin{vmatrix} 2 & 1 \\ \lambda & -1 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} 1 & -1 \\ -1 & \lambda \end{vmatrix} = 1 \cdot \lambda - (-1) \cdot (-1) = \lambda - 1 \) 2. \( \begin{vmatrix} 2 & -1 \\ \lambda & \lambda \end{vmatrix} = 2 \cdot \lambda - (-1) \cdot \lambda = 2\lambda + \lambda = 3\lambda \) 3. \( \begin{vmatrix} 2 & 1 \\ \lambda & -1 \end{vmatrix} = 2 \cdot (-1) - 1 \cdot \lambda = -2 - \lambda \) Putting it all together, we have: \[ (\lambda - 1) + 3\lambda + (-2 - \lambda) = 0 \] ### Step 5: Simplify the equation Combine like terms: \[ \lambda - 1 + 3\lambda - 2 - \lambda = 0 \] \[ (1 + 3 - 1)\lambda - 3 = 0 \] \[ 3\lambda - 3 = 0 \] ### Step 6: Solve for \( \lambda \) Now, isolate \( \lambda \): \[ 3\lambda = 3 \implies \lambda = 1 \] Thus, the value of \( \lambda \) for which the vectors are coplanar is \( \lambda = 1 \).
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    PUNEET DOGRA|Exercise Prev Year Questions|134 Videos
  • TRIGONOMETRY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|163 Videos

Similar Questions

Explore conceptually related problems

What is the value of lambda for which the vectors hat(i)-hat(j)+hat(k), 2 hat(i)+hat(j)-hat(k) and lambda hat(i)-hat(j)+lambda hat(k) are co-planar?

The vectors lamdahat(i)+hat(j)+2hat(k),hat(i)+lamdahat(j)-hat(k) and 2hat(i)-hat(j)+lamda hat(k) are coplanar, if

The value of lamda for which the vectors 3hat(i)-6hat(j)+hat(k) and 2hat(i)-4hat(j)+lamda hat(k) are parallel is

What is the value of m, if the vector 2 hat(i) - hat(j) + hat(k), hat(i) + 2hat(j)- 3hat(k) and 3hat(i) + m hat(j)+ 5hat(k) are coplanar?

For what value of m are the vector 2hat(i) - 3hat(j) + 4hat(k), hat(i) + 2hat(j)- hat(k) and m hat(i) - hat(j)+ 2hat(k) coplanar?

The number of distinct real values of lambda , for which the vectors -lambda^(2)hat(i)+hat(j)+hat(k), hat(i)-lambda^(2)hat(j)+hat(k) and hat(i)+hat(j)-lambda^(2)hat(k) are coplanar, is

What is the value of m if the vectors 2hat(i)-hat(j)+hat(k), hat(i)+2hat(j)-3hat(k) and 3hat(i)+m hat(j)+5 hat(k) are coplanar?

For what value of m are the vectors 2hat(i)-3hat(j)+4hat(k), hat(i)+3hat(j)-hat(k) and m hat(i)-hat(j)+2 hat(k) coplanar ?

What is the value of lamda for which (lamda hat(i) + hat(j)- hat(k)) xx (3 hat(i) -2hat(j) + 4hat(k)) = (2hat(i) - 11 hat(j) - 7hat(k)) ?

PUNEET DOGRA-VECTOR-Prev Year Questions
  1. If the vector vec(a) lies in the planar of vectors vec(b) and vec(c ),...

    Text Solution

    |

  2. What is the sine of the angle between the vectors hat(i) + 2hat(j) + 3...

    Text Solution

    |

  3. If p, q, r and s be respectively the magnitude of the vectors 3hat(i)-...

    Text Solution

    |

  4. Which one of the following is the unit vector perpendicular to the vec...

    Text Solution

    |

  5. Consider the following statements in respect of the vectors vec(u)(1)=...

    Text Solution

    |

  6. If the position vector of a point p with respect to the origin O is ha...

    Text Solution

    |

  7. ABCD is a quadrilateral. Force vec(AB), vec(CB), vec(CD) and vec(DA) a...

    Text Solution

    |

  8. PQRS is a parallelogram, where vec(PQ) = 3hat(i) + 2hat(j) - m hat(k) ...

    Text Solution

    |

  9. What is the value of b such that the scalar product of the vector hat(...

    Text Solution

    |

  10. Let a, b and c b the distinct non-negative numbers. If the vectors a h...

    Text Solution

    |

  11. What is the vector equally inclined to the vectors hat(i)+ 3hat(j) and...

    Text Solution

    |

  12. Find the area of the triangle whose vertices are A(3, -1,2) ,B(1, - 1,...

    Text Solution

    |

  13. If   vec(a) = hat(i)- hat(k) , vec(b) = x hat(i) + hat(j) + (1-x) hat(...

    Text Solution

    |

  14. Consider the following statements 1. For any three vectors vec(a) ve...

    Text Solution

    |

  15. The vectors vec(a)= x hat(i) + z hat(k), vec(b) = hat(k), vec(c ) are ...

    Text Solution

    |

  16. Let vec(a) and vec(b) be two unit vectors and α be the angle between ...

    Text Solution

    |

  17. A vecotr vec(b) is collinear with the vector vec(a)= (2, 1, -1) and sa...

    Text Solution

    |

  18. What is the value of lamda for which the vectors hat(i) - hat(j) + hat...

    Text Solution

    |

  19. Find the area of the triangle whose vertices are A(3, -1,2) ,B(1, - 1,...

    Text Solution

    |

  20. If the angle between the vectors vec(a) and vec(b) is (pi)/(3). Then w...

    Text Solution

    |