Home
Class 14
MATHS
Consider the following function : 1. f...

Consider the following function :
1. `f(x)={{:((1)/(x),if,xne0),(0,if,x=0):}`
2. `f(x)={{:(2x+5,"if "xgt0),(x^(2)+2x+5,"if "xle0):}`
Which of the above function is/are derivable at x = 0?

A

Only 1

B

Only 2

C

Both 1 and 2

D

Neither 1 nor 2

Text Solution

AI Generated Solution

The correct Answer is:
To determine which of the given functions is derivable at \( x = 0 \), we will analyze each function step by step. ### Function 1: \[ f(x) = \begin{cases} \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] **Step 1: Check continuity at \( x = 0 \)** To check if \( f(x) \) is continuous at \( x = 0 \), we need to find the limit as \( x \) approaches 0: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1}{x} \] As \( x \) approaches 0, \( \frac{1}{x} \) approaches \( \infty \) or \( -\infty \) depending on the direction of approach. Thus, the limit does not exist. **Conclusion for Function 1:** Since the limit does not exist, \( f(x) \) is not continuous at \( x = 0 \), and therefore, it is not derivable at \( x = 0 \). ### Function 2: \[ f(x) = \begin{cases} 2x + 5 & \text{if } x > 0 \\ x^2 + 2x + 5 & \text{if } x \leq 0 \end{cases} \] **Step 2: Check continuity at \( x = 0 \)** First, we find \( f(0) \): \[ f(0) = 0^2 + 2(0) + 5 = 5 \] Next, we find the limit as \( x \) approaches 0: \[ \lim_{x \to 0^+} f(x) = 2(0) + 5 = 5 \] \[ \lim_{x \to 0^-} f(x) = 0^2 + 2(0) + 5 = 5 \] Since both one-sided limits equal \( f(0) \), we conclude that \( f(x) \) is continuous at \( x = 0 \). **Step 3: Check differentiability at \( x = 0 \)** To check if \( f(x) \) is differentiable at \( x = 0 \), we calculate the left-hand derivative (LHD) and right-hand derivative (RHD): - **Right-hand derivative (RHD)**: \[ f'(0^+) = \lim_{h \to 0^+} \frac{f(h) - f(0)}{h} = \lim_{h \to 0^+} \frac{(2h + 5) - 5}{h} = \lim_{h \to 0^+} \frac{2h}{h} = 2 \] - **Left-hand derivative (LHD)**: \[ f'(0^-) = \lim_{h \to 0^-} \frac{f(h) - f(0)}{h} = \lim_{h \to 0^-} \frac{(h^2 + 2h + 5) - 5}{h} = \lim_{h \to 0^-} \frac{h^2 + 2h}{h} = \lim_{h \to 0^-} (h + 2) = 2 \] Since both the RHD and LHD at \( x = 0 \) are equal: \[ f'(0^+) = f'(0^-) = 2 \] **Conclusion for Function 2:** Since \( f(x) \) is continuous and the derivatives from both sides are equal, \( f(x) \) is derivable at \( x = 0 \). ### Final Conclusion: - **Function 1** is not derivable at \( x = 0 \). - **Function 2** is derivable at \( x = 0 \).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTION

    PUNEET DOGRA|Exercise Practice Sheet|20 Videos
  • DIFFERENTION

    PUNEET DOGRA|Exercise Practice Sheet|20 Videos
  • DIFFERENTIAL EQUATION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |84 Videos
  • FUNCTIONS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |74 Videos

Similar Questions

Explore conceptually related problems

Consider the following functions: 1. f(x)={{:((1)/(x),if,xne0),(0,if,x=0):} 2. f(x)={{:(2x+5ifxgt0),(x^(2)+2x+5ifxle0):} Which of the above functions is / are derivable at x=0?

f(x)={((2-Sin(1/x))absx,,xne0),(0,,x=0):}

Conisder the function f(x)={{:(x^(2)ln|x|,xne0),(0,x=0):}. "What is" f'(0) equal to?

The function f(x)=x^(2)"sin"(1)/(x) , xne0,f(0)=0 at x=0

Consider the function f:R to R defined by f(x)={((2-sin((1)/(x)))|x|,",",x ne 0),(0,",",x=0):} .Then f is :

If f(x)={(xsin,((1)/(x)),xne0),(0,,x=0):} Then, lim_(xrarr0) f(x)

Discuss the continuity of the function : f(x)={{:((1-cosx)/x^(2)", "xne0),(1", "x=0):} at x = 0.

Consider the function f(x)={:{(x^(2)|x|x!=0),(" 0 "x=0):}} what is f'(0) equal to ?

PUNEET DOGRA-DIFFERENTION-PREV YEAR QUESTIONS
  1. Consider the function f(x)={{:(ax-2" for "-2ltxlt-1),(-1...

    Text Solution

    |

  2. The function f(x)=(1-sinx+cosx)/(1+sinx+cosx) is nto defined at x=pi. ...

    Text Solution

    |

  3. Consider the following function : 1. f(x)={{:((1)/(x),if,xne0),(0,if...

    Text Solution

    |

  4. Consider the function f(x)={{:(-2sinx,"for",xle-(pi)/(2)),(Asinx+B,"...

    Text Solution

    |

  5. Consider the function f(x)={{:(-2sinx,"for",xle-(pi)/(2)),(Asinx+B,"...

    Text Solution

    |

  6. Consider the function: f(x)={{:((alphacosx)/(pi-2x),"if "xne(pi)/(2)...

    Text Solution

    |

  7. Consider the function: f(x)={{:((alphacosx)/(pi-2x),"if "xne(pi)/(2)...

    Text Solution

    |

  8. Given a function f(x){{:(-1,if,xle0),(ax+b,if,0ltxlt1),(1,if,xge1):}...

    Text Solution

    |

  9. Given a function f(x){{:(-1,if,xle0),(ax+b,if,0ltxlt1),(1,if,xge1):}...

    Text Solution

    |

  10. Consider the following statements: I. underset(xrarr0)lim (x^(2))/(x...

    Text Solution

    |

  11. Read the following information carefully and answer the question given...

    Text Solution

    |

  12. Read the following information carefully and answer the question given...

    Text Solution

    |

  13. Read the following information carefully and answer the question given...

    Text Solution

    |

  14. Consider the function: f(x)={{:((tankx)/(x),xlt0),(3x+2k^(2),xle0):} ...

    Text Solution

    |

  15. Consider the following statements: I. The function f(x)=[x]. Where [...

    Text Solution

    |

  16. Consider the following statements: I. The function f(x)=root3(x) is ...

    Text Solution

    |

  17. Consider the following statements: I. The function f(x)=|x| is not d...

    Text Solution

    |

  18. Let f(x) be a function defined in 1lexltoo by. f(x)={:[(2-x,"for "1l...

    Text Solution

    |

  19. Let f(x) be a function defined in 1lexltoo by. f(x)={:[(2-x,"for "1l...

    Text Solution

    |

  20. Let f(x) be a function defined in 1lexltoo by. f(x)={:[(2-x,"for "1l...

    Text Solution

    |