Home
Class 14
MATHS
Consider the function f(x)={{:(-2sinx,...

Consider the function
`f(x)={{:(-2sinx,"for",xle-(pi)/(2)),(Asinx+B,"for",-(pi)/(2)lexle(pi)/(2)),(cosx,"for",xge(pi)/(2)):}`
which is continuous at everywhere
The value of A is

A

1

B

0

C

`-1`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( A \) in the piecewise function \[ f(x) = \begin{cases} -2 \sin x & \text{for } x < -\frac{\pi}{2} \\ A \sin x + B & \text{for } -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\ \cos x & \text{for } x > \frac{\pi}{2} \end{cases} \] which is continuous everywhere, we need to ensure continuity at the points where the function changes its definition, specifically at \( x = -\frac{\pi}{2} \) and \( x = \frac{\pi}{2} \). ### Step 1: Check continuity at \( x = -\frac{\pi}{2} \) For continuity at \( x = -\frac{\pi}{2} \), we need: \[ \lim_{x \to -\frac{\pi}{2}^-} f(x) = \lim_{x \to -\frac{\pi}{2}^+} f(x) = f\left(-\frac{\pi}{2}\right) \] Calculating the left-hand limit: \[ \lim_{x \to -\frac{\pi}{2}^-} f(x) = -2 \sin\left(-\frac{\pi}{2}\right) = -2 \cdot (-1) = 2 \] Calculating the right-hand limit: \[ \lim_{x \to -\frac{\pi}{2}^+} f(x) = A \sin\left(-\frac{\pi}{2}\right) + B = -A + B \] Setting these equal for continuity: \[ 2 = -A + B \quad \text{(Equation 1)} \] ### Step 2: Check continuity at \( x = \frac{\pi}{2} \) For continuity at \( x = \frac{\pi}{2} \), we need: \[ \lim_{x \to \frac{\pi}{2}^-} f(x) = \lim_{x \to \frac{\pi}{2}^+} f(x) = f\left(\frac{\pi}{2}\right) \] Calculating the left-hand limit: \[ \lim_{x \to \frac{\pi}{2}^-} f(x) = A \sin\left(\frac{\pi}{2}\right) + B = A + B \] Calculating the right-hand limit: \[ \lim_{x \to \frac{\pi}{2}^+} f(x) = \cos\left(\frac{\pi}{2}\right) = 0 \] Setting these equal for continuity: \[ A + B = 0 \quad \text{(Equation 2)} \] ### Step 3: Solve the equations We now have two equations: 1. \( -A + B = 2 \) (Equation 1) 2. \( A + B = 0 \) (Equation 2) From Equation 2, we can express \( B \) in terms of \( A \): \[ B = -A \] Substituting this into Equation 1: \[ -A + (-A) = 2 \\ -2A = 2 \\ A = -1 \] ### Step 4: Find \( B \) Now substituting \( A = -1 \) back into Equation 2 to find \( B \): \[ -1 + B = 0 \\ B = 1 \] ### Conclusion The values of \( A \) and \( B \) are: \[ A = -1, \quad B = 1 \] Thus, the value of \( A \) is \( \boxed{-1} \).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTION

    PUNEET DOGRA|Exercise Practice Sheet|20 Videos
  • DIFFERENTION

    PUNEET DOGRA|Exercise Practice Sheet|20 Videos
  • DIFFERENTIAL EQUATION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |84 Videos
  • FUNCTIONS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |74 Videos

Similar Questions

Explore conceptually related problems

Consider the function f(x)={{:(-2sinx,"for",xle-(pi)/(2)),(Asinx+B,"for",-(pi)/(2)lexle(pi)/(2)),(cosx,"for",xge(pi)/(2)):} which is continuous at everywhere The value of B is

Consider the function f(x)={{:(-2sinx,if,xle-(pi)/(2)),(Asinx+B,if,-(pi)/(2)ltxlt(pi)/(2)),(cosx,if,xge(pi)/(2)):} Which is continuous everywhere. The value of B is

Consider the function f(x)={{:(-2sinx,if,xle-(pi)/(2)),(Asinx+B,if,-(pi)/(2)ltxlt(pi)/(2)),(cosx,if,xge(pi)/(2)):} Which is continuous everywhere. The value of A is

If f(x)={(-4sinx+cosx, "for",xle-(pi)/2),(a sin x+b,"for",-(pi)/2ltxlt(pi)/2),(cosx+2,"for",xge(pi)/2):} is continuous, then

Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):} . If f is continuous on [-pi, pi) , then find the values of a and b.

The value of a and b such that the function f(x)={(-2sinx"," , -pi le x le -(pi)/(2)),(a sinx+b",", -(pi)/(2) lt x lt (pi)/(2)),(cosx",", (pi)/(2) le x le pi ):} is continuous in [-pi,pi] are

If f:R to R given by f(x)={(2cosx"," , "if", x le -(pi)/(2)),(a sin x+b",","if", -(pi)/(2) lt x lt (pi)/(2)),(1+cos^(2)x",","if",x ge(pi)/(2)):} is a continuous function on R, then (a, b) is equal to

Let f(x)={-2sin x for -pi<=x<=-(pi)/(2)a sin x+b for -(pi)/(2)

Consider the function f(x)={{:((alphacosx)/(pi-2x),If,xne(pi)/(2)),(3,If,x=(pi)/(2)):} Which is continuous at x=(pi)/(2) where alpha is a constant. What is the value of alpha ?

PUNEET DOGRA-DIFFERENTION-PREV YEAR QUESTIONS
  1. The function f(x)=(1-sinx+cosx)/(1+sinx+cosx) is nto defined at x=pi. ...

    Text Solution

    |

  2. Consider the following function : 1. f(x)={{:((1)/(x),if,xne0),(0,if...

    Text Solution

    |

  3. Consider the function f(x)={{:(-2sinx,"for",xle-(pi)/(2)),(Asinx+B,"...

    Text Solution

    |

  4. Consider the function f(x)={{:(-2sinx,"for",xle-(pi)/(2)),(Asinx+B,"...

    Text Solution

    |

  5. Consider the function: f(x)={{:((alphacosx)/(pi-2x),"if "xne(pi)/(2)...

    Text Solution

    |

  6. Consider the function: f(x)={{:((alphacosx)/(pi-2x),"if "xne(pi)/(2)...

    Text Solution

    |

  7. Given a function f(x){{:(-1,if,xle0),(ax+b,if,0ltxlt1),(1,if,xge1):}...

    Text Solution

    |

  8. Given a function f(x){{:(-1,if,xle0),(ax+b,if,0ltxlt1),(1,if,xge1):}...

    Text Solution

    |

  9. Consider the following statements: I. underset(xrarr0)lim (x^(2))/(x...

    Text Solution

    |

  10. Read the following information carefully and answer the question given...

    Text Solution

    |

  11. Read the following information carefully and answer the question given...

    Text Solution

    |

  12. Read the following information carefully and answer the question given...

    Text Solution

    |

  13. Consider the function: f(x)={{:((tankx)/(x),xlt0),(3x+2k^(2),xle0):} ...

    Text Solution

    |

  14. Consider the following statements: I. The function f(x)=[x]. Where [...

    Text Solution

    |

  15. Consider the following statements: I. The function f(x)=root3(x) is ...

    Text Solution

    |

  16. Consider the following statements: I. The function f(x)=|x| is not d...

    Text Solution

    |

  17. Let f(x) be a function defined in 1lexltoo by. f(x)={:[(2-x,"for "1l...

    Text Solution

    |

  18. Let f(x) be a function defined in 1lexltoo by. f(x)={:[(2-x,"for "1l...

    Text Solution

    |

  19. Let f(x) be a function defined in 1lexltoo by. f(x)={:[(2-x,"for "1l...

    Text Solution

    |

  20. Consider the function f(x)=(1-sinx)/((pi-2x)^(2)) where xne(pi)/(2)and...

    Text Solution

    |