Home
Class 14
MATHS
Consider the function: f(x)={{:((alpha...

Consider the function:
`f(x)={{:((alphacosx)/(pi-2x),"if "xne(pi)/(2)),(3,"if "x=(pi)/(2)):}`
Which is continuous at `x=(pi)/(2)`, where `alpha` is a constant.
What is the value of `alpha`?

A

6

B

3

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \alpha \) such that the function \[ f(x) = \begin{cases} \frac{\alpha \cos x}{\pi - 2x} & \text{if } x \neq \frac{\pi}{2} \\ 3 & \text{if } x = \frac{\pi}{2} \end{cases} \] is continuous at \( x = \frac{\pi}{2} \), we need to ensure that the limit of \( f(x) \) as \( x \) approaches \( \frac{\pi}{2} \) equals \( f\left(\frac{\pi}{2}\right) \). ### Step 1: Evaluate \( f\left(\frac{\pi}{2}\right) \) Since \( f\left(\frac{\pi}{2}\right) = 3 \), we have: \[ f\left(\frac{\pi}{2}\right) = 3 \] ### Step 2: Find the limit of \( f(x) \) as \( x \) approaches \( \frac{\pi}{2} \) We need to compute: \[ \lim_{x \to \frac{\pi}{2}} f(x) = \lim_{x \to \frac{\pi}{2}} \frac{\alpha \cos x}{\pi - 2x} \] Substituting \( x = \frac{\pi}{2} \): \[ \cos\left(\frac{\pi}{2}\right) = 0 \quad \text{and} \quad \pi - 2\left(\frac{\pi}{2}\right) = 0 \] This gives us the indeterminate form \( \frac{0}{0} \). ### Step 3: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] where \( f(x) = \alpha \cos x \) and \( g(x) = \pi - 2x \). #### Differentiate the numerator and denominator: - The derivative of the numerator \( f(x) = \alpha \cos x \) is \( f'(x) = -\alpha \sin x \). - The derivative of the denominator \( g(x) = \pi - 2x \) is \( g'(x) = -2 \). ### Step 4: Compute the limit using L'Hôpital's Rule Now we compute the limit: \[ \lim_{x \to \frac{\pi}{2}} \frac{-\alpha \sin x}{-2} = \frac{\alpha \sin\left(\frac{\pi}{2}\right)}{2} \] Since \( \sin\left(\frac{\pi}{2}\right) = 1 \): \[ \lim_{x \to \frac{\pi}{2}} f(x) = \frac{\alpha}{2} \] ### Step 5: Set the limit equal to \( f\left(\frac{\pi}{2}\right) \) For continuity at \( x = \frac{\pi}{2} \): \[ \frac{\alpha}{2} = 3 \] ### Step 6: Solve for \( \alpha \) Multiplying both sides by 2: \[ \alpha = 6 \] ### Conclusion Thus, the value of \( \alpha \) is: \[ \boxed{6} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTION

    PUNEET DOGRA|Exercise Practice Sheet|20 Videos
  • DIFFERENTION

    PUNEET DOGRA|Exercise Practice Sheet|20 Videos
  • DIFFERENTIAL EQUATION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |84 Videos
  • FUNCTIONS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |74 Videos

Similar Questions

Explore conceptually related problems

Consider the function f(x)={{:((alphacosx)/(pi-2x),If,xne(pi)/(2)),(3,If,x=(pi)/(2)):} Which is continuous at x=(pi)/(2) where alpha is a constant. What is lim_(xto0) f(x) equal to?

Consider the function: f(x)={{:((alphacosx)/(pi-2x),"if "xne(pi)/(2)),(3,"if "x=(pi)/(2)):} Which is continuous at x=(pi)/(2) , where alpha is a constant. What is underset(xrarr0)(lim)f(x) equal to?

For what value of k, function f(x)={((k cosx)/(pi-2x)",","if "x ne (pi)/(2)),(3",", "if " x =(pi)/(2)):} is continuous at x=(pi)/(2) ?

If f(x)={{:((1-sinx)/(pi-2x),,","xne(pi)/(2)),(lambda,,","x=(pi)/(2)):},"be continuous at "x=(pi)/(2), then value of lambda is

f(x)={(sin(cos x)-cos x)/((pi-2x)^(3)),quad if x+-(pi)/(2) and k,quad if x=(pi)/(2) is continuous at x=(pi)/(2), then k

If f(x)={:{((cot x-cos x)/((pi-2x)^(3))", for " x != (pi)/(2)),(k ", for " x = pi/2):} is continuous at x= pi/2 , where , then k=

Consider the function f(x)=(sin 2x)^(tan^(2)2x), x in (pi)/(4) . The value of f((pi)/(4)) such that f is continuous at x=(pi)/(4) is

If function f(x) given by f(x)={{:(,(sin x)^(1//(pi-2x)),xne pi//2),(,lambda,x=pi//2):} is continous at x=(pi)/(2) then lambda =

Examine the function, f(x) = {{:((cos x)/(pi//2 -x)",",x ne pi//2),(1",",x = pi//2):} for continuity at x = pi//2

PUNEET DOGRA-DIFFERENTION-PREV YEAR QUESTIONS
  1. Consider the function f(x)={{:(-2sinx,"for",xle-(pi)/(2)),(Asinx+B,"...

    Text Solution

    |

  2. Consider the function f(x)={{:(-2sinx,"for",xle-(pi)/(2)),(Asinx+B,"...

    Text Solution

    |

  3. Consider the function: f(x)={{:((alphacosx)/(pi-2x),"if "xne(pi)/(2)...

    Text Solution

    |

  4. Consider the function: f(x)={{:((alphacosx)/(pi-2x),"if "xne(pi)/(2)...

    Text Solution

    |

  5. Given a function f(x){{:(-1,if,xle0),(ax+b,if,0ltxlt1),(1,if,xge1):}...

    Text Solution

    |

  6. Given a function f(x){{:(-1,if,xle0),(ax+b,if,0ltxlt1),(1,if,xge1):}...

    Text Solution

    |

  7. Consider the following statements: I. underset(xrarr0)lim (x^(2))/(x...

    Text Solution

    |

  8. Read the following information carefully and answer the question given...

    Text Solution

    |

  9. Read the following information carefully and answer the question given...

    Text Solution

    |

  10. Read the following information carefully and answer the question given...

    Text Solution

    |

  11. Consider the function: f(x)={{:((tankx)/(x),xlt0),(3x+2k^(2),xle0):} ...

    Text Solution

    |

  12. Consider the following statements: I. The function f(x)=[x]. Where [...

    Text Solution

    |

  13. Consider the following statements: I. The function f(x)=root3(x) is ...

    Text Solution

    |

  14. Consider the following statements: I. The function f(x)=|x| is not d...

    Text Solution

    |

  15. Let f(x) be a function defined in 1lexltoo by. f(x)={:[(2-x,"for "1l...

    Text Solution

    |

  16. Let f(x) be a function defined in 1lexltoo by. f(x)={:[(2-x,"for "1l...

    Text Solution

    |

  17. Let f(x) be a function defined in 1lexltoo by. f(x)={:[(2-x,"for "1l...

    Text Solution

    |

  18. Consider the function f(x)=(1-sinx)/((pi-2x)^(2)) where xne(pi)/(2)and...

    Text Solution

    |

  19. Consider the function f(x)=(1-sinx)/((pi-2x)^(2)) where xne(pi)/(2)and...

    Text Solution

    |

  20. Consider the following statement 1. f(x)=e^(x), where xgt0 2. g(x)...

    Text Solution

    |