Home
Class 14
MATHS
Consider the function: f(x)={{:((alpha...

Consider the function:
`f(x)={{:((alphacosx)/(pi-2x),"if "xne(pi)/(2)),(3,"if "x=(pi)/(2)):}`
Which is continuous at `x=(pi)/(2)`, where `alpha` is a constant.
What is `underset(xrarr0)(lim)f(x)` equal to?

A

0

B

3

C

`(3)/(pi)`

D

`(6)/(pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function given and find the limit as \( x \) approaches 0. ### Step-by-Step Solution: 1. **Understanding the Function**: The function \( f(x) \) is defined as: \[ f(x) = \begin{cases} \frac{\alpha \cos x}{\pi - 2x} & \text{if } x \neq \frac{\pi}{2} \\ 3 & \text{if } x = \frac{\pi}{2} \end{cases} \] We need to ensure that this function is continuous at \( x = \frac{\pi}{2} \). 2. **Finding the Limit as \( x \) Approaches \( \frac{\pi}{2} \)**: To check continuity at \( x = \frac{\pi}{2} \), we need to find: \[ \lim_{x \to \frac{\pi}{2}} f(x) = \lim_{x \to \frac{\pi}{2}} \frac{\alpha \cos x}{\pi - 2x} \] Substituting \( x = \frac{\pi}{2} \): \[ f\left(\frac{\pi}{2}\right) = \frac{\alpha \cos\left(\frac{\pi}{2}\right)}{\pi - 2\left(\frac{\pi}{2}\right)} = \frac{\alpha \cdot 0}{\pi - \pi} = \frac{0}{0} \] This is an indeterminate form, so we apply L'Hôpital's Rule. 3. **Applying L'Hôpital's Rule**: Differentiate the numerator and denominator: - The derivative of the numerator \( \alpha \cos x \) is \( -\alpha \sin x \). - The derivative of the denominator \( \pi - 2x \) is \( -2 \). Thus, we have: \[ \lim_{x \to \frac{\pi}{2}} \frac{-\alpha \sin x}{-2} = \lim_{x \to \frac{\pi}{2}} \frac{\alpha \sin x}{2} \] Substituting \( x = \frac{\pi}{2} \): \[ = \frac{\alpha \cdot 1}{2} = \frac{\alpha}{2} \] 4. **Setting the Limit Equal to 3**: Since the function is continuous at \( x = \frac{\pi}{2} \), we set: \[ \frac{\alpha}{2} = 3 \] Solving for \( \alpha \): \[ \alpha = 6 \] 5. **Finding the Limit as \( x \) Approaches 0**: Now we need to find: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{6 \cos x}{\pi - 2x} \] Substituting \( x = 0 \): \[ = \frac{6 \cdot \cos(0)}{\pi - 2 \cdot 0} = \frac{6 \cdot 1}{\pi} = \frac{6}{\pi} \] ### Final Answer: \[ \lim_{x \to 0} f(x) = \frac{6}{\pi} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTION

    PUNEET DOGRA|Exercise Practice Sheet|20 Videos
  • DIFFERENTION

    PUNEET DOGRA|Exercise Practice Sheet|20 Videos
  • DIFFERENTIAL EQUATION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |84 Videos
  • FUNCTIONS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |74 Videos

Similar Questions

Explore conceptually related problems

Consider the function: f(x)={{:((alphacosx)/(pi-2x),"if "xne(pi)/(2)),(3,"if "x=(pi)/(2)):} Which is continuous at x=(pi)/(2) , where alpha is a constant. What is the value of alpha ?

Consider the function f(x)={{:((alphacosx)/(pi-2x),If,xne(pi)/(2)),(3,If,x=(pi)/(2)):} Which is continuous at x=(pi)/(2) where alpha is a constant. What is the value of alpha ?

Consider the function f(x)={{:((alphacosx)/(pi-2x),If,xne(pi)/(2)),(3,If,x=(pi)/(2)):} Which is continuous at x=(pi)/(2) where alpha is a constant. What is lim_(xto0) f(x) equal to?

For what value of k, function f(x)={((k cosx)/(pi-2x)",","if "x ne (pi)/(2)),(3",", "if " x =(pi)/(2)):} is continuous at x=(pi)/(2) ?

If f(x)={{:((1-sinx)/(pi-2x),,","xne(pi)/(2)),(lambda,,","x=(pi)/(2)):},"be continuous at "x=(pi)/(2), then value of lambda is

If f(x)={:{((cot x-cos x)/((pi-2x)^(3))", for " x != (pi)/(2)),(k ", for " x = pi/2):} is continuous at x= pi/2 , where , then k=

If function f(x) given by f(x)={{:(,(sin x)^(1//(pi-2x)),xne pi//2),(,lambda,x=pi//2):} is continous at x=(pi)/(2) then lambda =

Consider the function f(x)=(sin 2x)^(tan^(2)2x), x in (pi)/(4) . The value of f((pi)/(4)) such that f is continuous at x=(pi)/(4) is

Find the value of k so that the function f defined by f(x)={(kcosx)/(pi-2x),3 , "if" x !=pi/2"if" x=pi/2 is continuous at x=pi/2

PUNEET DOGRA-DIFFERENTION-PREV YEAR QUESTIONS
  1. Consider the function f(x)={{:(-2sinx,"for",xle-(pi)/(2)),(Asinx+B,"...

    Text Solution

    |

  2. Consider the function: f(x)={{:((alphacosx)/(pi-2x),"if "xne(pi)/(2)...

    Text Solution

    |

  3. Consider the function: f(x)={{:((alphacosx)/(pi-2x),"if "xne(pi)/(2)...

    Text Solution

    |

  4. Given a function f(x){{:(-1,if,xle0),(ax+b,if,0ltxlt1),(1,if,xge1):}...

    Text Solution

    |

  5. Given a function f(x){{:(-1,if,xle0),(ax+b,if,0ltxlt1),(1,if,xge1):}...

    Text Solution

    |

  6. Consider the following statements: I. underset(xrarr0)lim (x^(2))/(x...

    Text Solution

    |

  7. Read the following information carefully and answer the question given...

    Text Solution

    |

  8. Read the following information carefully and answer the question given...

    Text Solution

    |

  9. Read the following information carefully and answer the question given...

    Text Solution

    |

  10. Consider the function: f(x)={{:((tankx)/(x),xlt0),(3x+2k^(2),xle0):} ...

    Text Solution

    |

  11. Consider the following statements: I. The function f(x)=[x]. Where [...

    Text Solution

    |

  12. Consider the following statements: I. The function f(x)=root3(x) is ...

    Text Solution

    |

  13. Consider the following statements: I. The function f(x)=|x| is not d...

    Text Solution

    |

  14. Let f(x) be a function defined in 1lexltoo by. f(x)={:[(2-x,"for "1l...

    Text Solution

    |

  15. Let f(x) be a function defined in 1lexltoo by. f(x)={:[(2-x,"for "1l...

    Text Solution

    |

  16. Let f(x) be a function defined in 1lexltoo by. f(x)={:[(2-x,"for "1l...

    Text Solution

    |

  17. Consider the function f(x)=(1-sinx)/((pi-2x)^(2)) where xne(pi)/(2)and...

    Text Solution

    |

  18. Consider the function f(x)=(1-sinx)/((pi-2x)^(2)) where xne(pi)/(2)and...

    Text Solution

    |

  19. Consider the following statement 1. f(x)=e^(x), where xgt0 2. g(x)...

    Text Solution

    |

  20. A function f RrarrR is defined as f(x)=x^(2) for xge0 and f(x)=-x for ...

    Text Solution

    |