Home
Class 14
MATHS
If y=tan^(-1)((5-2tansqrt(x))/(2+5tan sq...

If `y=tan^(-1)((5-2tansqrt(x))/(2+5tan sqrt(x)))` then what is `(dy)/(dx)` equal to ?

A

A) `-(1)/(2sqrt(x))`

B

B) `1`

C

C) `-1`

D

D) `(1)/(2sqrt(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \[ y = \tan^{-1}\left(\frac{5 - 2\tan(\sqrt{x})}{2 + 5\tan(\sqrt{x})}\right), \] we can follow these steps: ### Step 1: Rewrite the function We can simplify the expression inside the inverse tangent function. Notice that we can factor out a 2 from both the numerator and the denominator: \[ y = \tan^{-1}\left(\frac{2\left(\frac{5}{2} - \tan(\sqrt{x})\right)}{2\left(1 + \frac{5}{2}\tan(\sqrt{x})\right)}\right). \] This simplifies to: \[ y = \tan^{-1}\left(\frac{5/2 - \tan(\sqrt{x})}{1 + (5/2)\tan(\sqrt{x})}\right). \] ### Step 2: Apply the formula for inverse tangent Using the formula for the inverse tangent of a difference: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a - b}{1 + ab}\right), \] we can let \( a = \frac{5}{2} \) and \( b = \tan(\sqrt{x}) \). Thus, we can express \( y \) as: \[ y = \tan^{-1}\left(\frac{5}{2}\right) - \tan^{-1}(\tan(\sqrt{x})). \] Since \( \tan^{-1}(\tan(\theta)) = \theta \) for \( \theta \) in the principal range, we have: \[ y = \tan^{-1}\left(\frac{5}{2}\right) - \sqrt{x}. \] ### Step 3: Differentiate with respect to \( x \) Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = 0 - \frac{d}{dx}(\sqrt{x}). \] The derivative of \( \sqrt{x} \) is: \[ \frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}}. \] Thus, we have: \[ \frac{dy}{dx} = -\frac{1}{2\sqrt{x}}. \] ### Final Answer Therefore, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -\frac{1}{2\sqrt{x}}. \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^(-1)((5-2tansqrtx)/(2+5tansqrtx)) , then what is (dy)/(dx) equal to ?

If y=tan^(-1)[(x-sqrt(1-x^(2)))/(x+sqrt(1-x^(2)))]," then "(dy)/(dx)=

If y=sqrt((1+tan x)/(1-tan x)) then (dy)/(dx)= is equal to

If y = tan^(-1)((x)/(sqrt(1 -x^2))) , then (dy)/(dx) is equal to

If y =sqrt (tan sqrt x ), then (dy)/(dx) =

If y= sec ( tan sqrt x ) ,then (dy)/(dx) =

y=tan^(-1)sqrt(x)then-(dy)/(dx)=

If y=tan^(-1)((sqrt(1+x^(2))-1)/(x)) , then find (dy)/(dx) when -1lexle1.

If x=y tan((x)/(2)), then (dy)/(dx)=