Home
Class 14
MATHS
If u=e^(ax)sinbx and v=e^(ax)cosbx. then...

If `u=e^(ax)sinbx` and `v=e^(ax)cosbx`. then what is `u(du)/(dx)+v(dv)/(dx)` equal to ?

A

A) `ae^(2ax)`

B

B) `(a^(2)+b^(2))e^(ax)`

C

C) `abe^(2ax)`

D

D) `(a+b)e^(ax)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate \( u \frac{du}{dx} + v \frac{dv}{dx} \) where \( u = e^{ax} \sin(bx) \) and \( v = e^{ax} \cos(bx) \). ### Step-by-Step Solution: 1. **Find \( \frac{du}{dx} \)**: - Using the product rule for derivatives, we have: \[ \frac{du}{dx} = \frac{d}{dx}(e^{ax} \sin(bx)) = e^{ax} \cdot \frac{d}{dx}(\sin(bx)) + \sin(bx) \cdot \frac{d}{dx}(e^{ax}) \] - The derivative of \( \sin(bx) \) is \( b \cos(bx) \) and the derivative of \( e^{ax} \) is \( ae^{ax} \). - Thus, \[ \frac{du}{dx} = e^{ax} (b \cos(bx)) + \sin(bx) (ae^{ax}) = e^{ax} (b \cos(bx) + a \sin(bx)) \] 2. **Find \( \frac{dv}{dx} \)**: - Similarly, using the product rule: \[ \frac{dv}{dx} = \frac{d}{dx}(e^{ax} \cos(bx)) = e^{ax} \cdot \frac{d}{dx}(\cos(bx)) + \cos(bx) \cdot \frac{d}{dx}(e^{ax}) \] - The derivative of \( \cos(bx) \) is \( -b \sin(bx) \). - Thus, \[ \frac{dv}{dx} = e^{ax} (-b \sin(bx)) + \cos(bx) (ae^{ax}) = e^{ax} (-b \sin(bx) + a \cos(bx)) \] 3. **Calculate \( u \frac{du}{dx} + v \frac{dv}{dx} \)**: - Substitute \( u \) and \( v \) into the expression: \[ u \frac{du}{dx} = e^{ax} \sin(bx) \cdot e^{ax} (b \cos(bx) + a \sin(bx)) = e^{2ax} \sin(bx)(b \cos(bx) + a \sin(bx)) \] \[ v \frac{dv}{dx} = e^{ax} \cos(bx) \cdot e^{ax} (-b \sin(bx) + a \cos(bx)) = e^{2ax} \cos(bx)(-b \sin(bx) + a \cos(bx)) \] - Now combine the two results: \[ u \frac{du}{dx} + v \frac{dv}{dx} = e^{2ax} \left( \sin(bx)(b \cos(bx) + a \sin(bx)) + \cos(bx)(-b \sin(bx) + a \cos(bx)) \right) \] 4. **Simplify the expression**: - Distributing and combining like terms: \[ = e^{2ax} \left( ab \sin^2(bx) + a \sin(bx) \cos(bx) + a \cos^2(bx) - b \sin(bx) \cos(bx) \right) \] - This can be rearranged: \[ = e^{2ax} \left( a(\sin^2(bx) + \cos^2(bx)) + (a - b) \sin(bx) \cos(bx) \right) \] - Using the identity \( \sin^2(bx) + \cos^2(bx) = 1 \): \[ = e^{2ax} \left( a + (a - b) \sin(bx) \cos(bx) \right) \] ### Final Result: Thus, the final result for \( u \frac{du}{dx} + v \frac{dv}{dx} \) is: \[ u \frac{du}{dx} + v \frac{dv}{dx} = e^{2ax} \left( a + (a - b) \sin(bx) \cos(bx) \right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If u=e^(ax)sin bx and v=e^(ax)cos bx, then what is

If y=e^(ax)sinbx," then "(d^(2)y)/(dx^(2))-2a(dy)/(dx)=

The function u=e^(x)sin x,v=e^(x)cos x satisfy the equation (a) v(du)/(dx)-u(du)/(dx)=u^(2)+v^(2)(b)(d^(2)u)/(dx^(2))=2v(c)d^(2)v())/(dx^(2))=-2u(d)(du)/(dx)+(dv)/(dx)=2v

If u=inte^(ax)sin " bx dx" and v=int^(e^(ax))cos " bx dx" ,then tan^(-1)((u)/(v))+tan^(-1)((b)/(a)) equals

If y=e^(ax)sinbx, then (d^(2)y)/(dx^(2))-2a(dy)/(dx)+a^(2)y=

If u=f(x^2), v=g(x^3) , f'(x)=sinx and g'(x)= cos x then find (du) / (dv) .

int e^(ax)cos(bx+c)dx

If u=inte^(ax)sin " bx dx" and v=inte^(ax)cos " bx dx then "(u^(2)+v^(2))(a^(2)+b^(2))=