Home
Class 14
MATHS
What is (dsqrt(1-sin2x))/dx equal to, wh...

What is `(dsqrt(1-sin2x))/dx` equal to, where `pi/4ltxltpi/2` ?

A

`cosx+sinx`

B

`-(cosx+sinx)`

C

`pm(cosx+sinx)`

D

None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( \sqrt{1 - \sin(2x)} \) with respect to \( x \), we will follow these steps: ### Step 1: Rewrite the function The function can be expressed as: \[ y = \sqrt{1 - \sin(2x)} \] ### Step 2: Apply the chain rule To differentiate \( y \), we will use the chain rule. The derivative of \( \sqrt{u} \) is \( \frac{1}{2\sqrt{u}} \cdot \frac{du}{dx} \). Here, \( u = 1 - \sin(2x) \). ### Step 3: Differentiate the inner function Now we need to find \( \frac{du}{dx} \): \[ u = 1 - \sin(2x) \] Using the chain rule again, we differentiate \( \sin(2x) \): \[ \frac{du}{dx} = -\cos(2x) \cdot \frac{d(2x)}{dx} = -2\cos(2x) \] ### Step 4: Combine the derivatives Now we can substitute back into the derivative of \( y \): \[ \frac{dy}{dx} = \frac{1}{2\sqrt{1 - \sin(2x)}} \cdot (-2\cos(2x)) \] This simplifies to: \[ \frac{dy}{dx} = -\frac{\cos(2x)}{\sqrt{1 - \sin(2x)}} \] ### Step 5: Simplify further using trigonometric identities We know that \( \sin(2x) = 2\sin(x)\cos(x) \). Therefore, we can rewrite \( 1 - \sin(2x) \) as: \[ 1 - \sin(2x) = 1 - 2\sin(x)\cos(x) = (\sin^2(x) + \cos^2(x)) - 2\sin(x)\cos(x) = (\sin(x) - \cos(x))^2 \] Thus, \[ \sqrt{1 - \sin(2x)} = |\sin(x) - \cos(x)| \] ### Step 6: Determine the sign of \( \sin(x) - \cos(x) \) Since we are given that \( \frac{\pi}{4} < x < \frac{\pi}{2} \), in this interval, \( \sin(x) > \cos(x) \). Therefore, we can drop the absolute value: \[ \sqrt{1 - \sin(2x)} = \sin(x) - \cos(x) \] ### Step 7: Final derivative Now substituting this back into our derivative: \[ \frac{dy}{dx} = -\frac{\cos(2x)}{\sin(x) - \cos(x)} \] Using the identity \( \cos(2x) = \cos^2(x) - \sin^2(x) \), we can express the final answer as: \[ \frac{dy}{dx} = \cos(x) + \sin(x) \] ### Conclusion Thus, the derivative \( \frac{d}{dx} \sqrt{1 - \sin(2x)} \) is: \[ \frac{d}{dx} \sqrt{1 - \sin(2x)} = \cos(x) + \sin(x) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is (d sqrt(1-sin2x))/(dx) equal to,where (pi)/(4)

What is int_0^pi (dx)/(1+2sin^2x) equal to

What is int_0^(2pi) sqrt(1+ sin""x/2 dx) equal to

What is int_(0)^(2pi) sqrt(1+ sin'x/2) dx equal to ?

What is int_0^(pi//2) |sin x-cosx|dx equal to

If intsqrt(1-sin2x)dx=Asinx+Bcosx+C , where 0ltxlt(pi)/(4) , then which one of the following is correct?

What is int ((1)/(cos^(2)x) - (1)/(sin^(x)x))dx equal to ? where c is the constant of integration

What is int_(-pi//2)^(pi//2) x sin x dx equal to

int_(0)^(1) |sin 2pi x|dx id equal to