Home
Class 14
MATHS
Let f(x+y)=f(x)f(y) and where f(x)=1+xg(...

Let `f(x+y)=f(x)f(y)` and where `f(x)=1+xg(x)phi(x)`, `lim_(xto0)g(x)=a` and `lim_(xto0)phi(x)=b` Then what is `f'(x)` equal to ?

A

`a+abf(x)`

B

`1+ab`

C

ab

D

`abf(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(x) \) given the functional equation \( f(x+y) = f(x)f(y) \) and the form \( f(x) = 1 + xg(x)\phi(x) \), we can follow these steps: ### Step 1: Differentiate \( f(x) \) We start with the definition of the derivative: \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] ### Step 2: Use the functional equation Using the property \( f(x+y) = f(x)f(y) \), we can express \( f(x+h) \): \[ f(x+h) = f(x)f(h) \] ### Step 3: Substitute into the derivative formula Substituting this into the derivative formula gives: \[ f'(x) = \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{h} \] ### Step 4: Factor out \( f(x) \) Factoring out \( f(x) \) from the numerator: \[ f'(x) = \lim_{h \to 0} f(x) \frac{f(h) - 1}{h} \] ### Step 5: Find \( f(h) - 1 \) From the given form of \( f(x) \): \[ f(h) = 1 + hg(h)\phi(h) \] Thus: \[ f(h) - 1 = hg(h)\phi(h) \] ### Step 6: Substitute back into the limit Now substituting back, we have: \[ f'(x) = \lim_{h \to 0} f(x) \frac{hg(h)\phi(h)}{h} \] This simplifies to: \[ f'(x) = \lim_{h \to 0} f(x) g(h) \phi(h) \] ### Step 7: Evaluate the limits Using the limits given in the problem: \[ \lim_{h \to 0} g(h) = a \quad \text{and} \quad \lim_{h \to 0} \phi(h) = b \] We can substitute these limits into our expression: \[ f'(x) = f(x) \cdot a \cdot b \] ### Step 8: Substitute \( f(x) \) Now, substituting \( f(x) = 1 + xg(x)\phi(x) \) back into the expression: \[ f'(x) = (1 + xg(x)\phi(x)) \cdot ab \] ### Final Result Thus, we have: \[ f'(x) = ab(1 + xg(x)\phi(x)) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x+y)=f(x)f(y)andf(x)=1+xg(x)phi(x)" where "lim_(x to 0) g(x)=a andlim_(x to 0) phi(x)=b . Then what is f(x) equal to?

Let f(x+y)=f(x)f(y) and f(x)=1+xg(x)G(x) where lim_(x rarr0)g(x)=a and lim_(x rarr o)G(x)=b Then f'(x) is

Let f:R to R be a function given by f(x+y)=f(x)f(y)"for all "x,y in R "If "f(x)=1+xg(x)+x^(2) g(x) phi(x)"such that "lim_(x to 0) g(x)=a and lim_(x to 0) phi(x)=b, then f'(x) is equal to

If f(x)=cos^(-1)(4x^3-3x)and lim_(xto1//2+)f'(x)=a and lim_(xto1//2-)f'(x)=b then a + b+ 3 is equal to

Let f(x) be a continuous and differentiable function satisfying f(x+y)=f(x)f(y)AA x,y in R if f(x) an be expressed as f(x)=1+xP(x)+x^(2)Q(x) where lim_(x rarr0)P(x)=a and lim_(x rarr0)Q(x)=b then f'(x) is equal to :

Let f(x+y)=f(x).f(y) for all x, y in R and f(x)=1+x phi(x)log3. If lim_(xrarr0)phi(x)=1, then f'(x) is equal to

Let f(x) be a function satisfying f(x+y)=f(x)f(y) for all x,y in R and f(x)=1+xg(x) where lim_(x to 0) g(x)=1 . Then f'(x) is equal to

If lim_(xto0) phi(x)=a^(2) , where ane0 , then what is lim_(xto0) phi((x)/(a)) equal to?