Home
Class 14
MATHS
What is the derivative of the function f...

What is the derivative of the function f(x) = `e^(tanx)+ln(secx)-e^(lnx)at x=(pi)/(4)` ?

A

`e//2`

B

e

C

2e

D

4e

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( f(x) = e^{\tan x} + \ln(\sec x) - e^{\ln x} \) at \( x = \frac{\pi}{4} \), we will follow these steps: ### Step 1: Differentiate the function We need to find \( f'(x) \). The function consists of three parts, so we will differentiate each part separately. 1. **Differentiate \( e^{\tan x} \)**: \[ \frac{d}{dx}(e^{\tan x}) = e^{\tan x} \cdot \sec^2 x \] (Using the chain rule, where the derivative of \( \tan x \) is \( \sec^2 x \)). 2. **Differentiate \( \ln(\sec x) \)**: \[ \frac{d}{dx}(\ln(\sec x)) = \frac{1}{\sec x} \cdot \frac{d}{dx}(\sec x) = \frac{1}{\sec x} \cdot \sec x \tan x = \tan x \] (Using the derivative of \( \sec x \), which is \( \sec x \tan x \)). 3. **Differentiate \( -e^{\ln x} \)**: \[ \frac{d}{dx}(-e^{\ln x}) = -\frac{d}{dx}(x) = -1 \] (Since \( e^{\ln x} = x \)). Combining these results, we have: \[ f'(x) = e^{\tan x} \sec^2 x + \tan x - 1 \] ### Step 2: Evaluate the derivative at \( x = \frac{\pi}{4} \) Now we need to evaluate \( f'(\frac{\pi}{4}) \): 1. **Calculate \( \tan(\frac{\pi}{4}) \)**: \[ \tan\left(\frac{\pi}{4}\right) = 1 \] 2. **Calculate \( \sec^2(\frac{\pi}{4}) \)**: \[ \sec\left(\frac{\pi}{4}\right) = \frac{1}{\cos\left(\frac{\pi}{4}\right)} = \frac{1}{\frac{1}{\sqrt{2}}} = \sqrt{2} \quad \Rightarrow \quad \sec^2\left(\frac{\pi}{4}\right) = 2 \] 3. **Substitute these values into \( f'(\frac{\pi}{4}) \)**: \[ f'\left(\frac{\pi}{4}\right) = e^{\tan\left(\frac{\pi}{4}\right)} \sec^2\left(\frac{\pi}{4}\right) + \tan\left(\frac{\pi}{4}\right) - 1 \] \[ = e^1 \cdot 2 + 1 - 1 \] \[ = 2e + 1 - 1 = 2e \] ### Final Answer Thus, the derivative of the function at \( x = \frac{\pi}{4} \) is: \[ f'\left(\frac{\pi}{4}\right) = 2e \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The derivative of function f(x) = log_e(2x) w.r.t. t is

Find the second derivatives of the following functions : tanx+secx

The derivative of f(x) = (x^(4))/(e^(x)) is

The derivative of f(x) = e^(e^(x^(2))) is

What is the derivative of (log_(tanx)cotx)(log_(cotx)tanx)^(-1) at x=(pi)/(4) ?

The derivative of f(x) = x^(4) e^(x) is

find the derivative of y=e^(x)log_(e)x

Range of the function f(x)=log_(e)sqrt(4-x^(2)) is

y=e^(x)lnx

Find the integral of e^x(tanx+log(secx)))