Home
Class 14
MATHS
If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1...

If `y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1))` then `(dy)/(dx)` is equal to :

A

A) 0

B

B) 1

C

C) `(x-1)/(x+1)`

D

D) `(x+1)/(x-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given function: \[ y = \sec^{-1}\left(\frac{x+1}{x-1}\right) + \sin^{-1}\left(\frac{x-1}{x+1}\right) \] ### Step 1: Rewrite the Inverse Functions We can use the property of inverse trigonometric functions. Recall that: \[ \sec^{-1}(a) + \sin^{-1}(b) = \frac{\pi}{2} \text{ if } a = \frac{1}{b} \] In our case, we need to check if: \[ \frac{x+1}{x-1} = \frac{1}{\frac{x-1}{x+1}} \] This simplifies to: \[ \frac{x+1}{x-1} = \frac{x+1}{x-1} \] This is true, so we can use the property: \[ \sec^{-1}\left(\frac{x+1}{x-1}\right) + \sin^{-1}\left(\frac{x-1}{x+1}\right) = \frac{\pi}{2} \] ### Step 2: Simplify the Expression for y Thus, we can rewrite y as: \[ y = \frac{\pi}{2} \] ### Step 3: Differentiate y with Respect to x Now, we differentiate y with respect to x: \[ \frac{dy}{dx} = \frac{d}{dx}\left(\frac{\pi}{2}\right) \] Since \(\frac{\pi}{2}\) is a constant, its derivative is: \[ \frac{dy}{dx} = 0 \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is equal to: \[ \frac{dy}{dx} = 0 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Ify=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)), then (dy)/(dx)

If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)),x>0 Find (dy)/(dx).

If (sec y)/(1+x)=(1)/(1-x) then (dy)/(dx) is equal to

If y=sec^(-1)((sqrt(x)+1)/(sqrt(x)-1))+sin^(-1)((sqrt(x)-1)/(sqrt(x)+1)) then (dy)/(dx) is equal to?

If y = sin^(-1) sqrt(1-x), "then " (dy)/(dx) is equal to

If y=(sin^(-1)x-cos^(-1)x)/(sin^(-1)x+cos^(-1)x)," then "(dy)/(dx)=