Home
Class 14
MATHS
If y=cos^(-1)((2x)/(1+x^(2))) then (dy)/...

If `y=cos^(-1)((2x)/(1+x^(2)))` then `(dy)/(dx)` is equal to :

A

`-(2)/(1+x^(2))" for all "|x|lt1`

B

`-(2)/(1+x^(2))" for all "|x|gt1`

C

`(2)/(1+x^(2))" for all "|x|lt1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \( y = \cos^{-1}\left(\frac{2x}{1+x^2}\right) \), we can follow these steps: ### Step 1: Rewrite the function We start with the function: \[ y = \cos^{-1}\left(\frac{2x}{1+x^2}\right) \] ### Step 2: Use the trigonometric identity Recognize that \( \frac{2x}{1+x^2} \) can be expressed in terms of the sine of an angle. Specifically, we can set \( x = \tan(\theta) \). Then: \[ \frac{2x}{1+x^2} = \sin(2\theta) \] Thus, we can rewrite \( y \): \[ y = \cos^{-1}(\sin(2\theta)) \] ### Step 3: Simplify using the complementary angle Using the identity \( \cos^{-1}(\sin(2\theta)) = \frac{\pi}{2} - 2\theta \): \[ y = \frac{\pi}{2} - 2\theta \] ### Step 4: Substitute back for \( \theta \) Since \( \theta = \tan^{-1}(x) \), we have: \[ y = \frac{\pi}{2} - 2\tan^{-1}(x) \] ### Step 5: Differentiate with respect to \( x \) Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = 0 - 2 \cdot \frac{d}{dx}(\tan^{-1}(x)) \] Using the derivative of \( \tan^{-1}(x) \): \[ \frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{1+x^2} \] Thus, \[ \frac{dy}{dx} = -2 \cdot \frac{1}{1+x^2} = -\frac{2}{1+x^2} \] ### Step 6: Conclusion Therefore, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -\frac{2}{1+x^2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=cos ^(-1) sqrt((1+x) /( 2) )then (dy)/(dx)=

If y=(cos^(-1)x)/(1+x^(2)),"then " dy/dx=

if y=(1+1/x^(2))/(1-1/(x)^(2)) ,then (dy)/(dx) is equal to

If y=cos ^(-1) sqrt(1+x^(2)),then (dy)/(dx) =

If let y=cos^(-1)((1-e^(2x))/(1+e^(2x)))" then "(dy)/(dx)=

If y = log ((cos x)/(1 - sin x)), "then " (dy)/(dx) is equal to

If y= ( cos x ^(2))^(2) , "then" (dy)/(dx) is equal to

If y=cos((1)/(2)cos^(-1)x)," then "(dy)/(dx)=