Home
Class 14
MATHS
Consider the function f(x)=|{:(x^(3),s...

Consider the function
`f(x)=|{:(x^(3),sinx,cosx),(6,-1,0),(p,p,p^(3)):}|` where p is a constant.
What is the value of `f'(0)` ?

A

`p^(3)`

B

`3p^(3)`

C

`6p^(3)`

D

`-6p^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f'(0) \) for the function \[ f(x) = \begin{vmatrix} x^3 & \sin x & \cos x \\ 6 & -1 & 0 \\ p & p & p^3 \end{vmatrix} \] we will follow these steps: ### Step 1: Differentiate the Determinant To differentiate the determinant with respect to \( x \), we apply the rule for differentiating determinants. The derivative of a determinant can be found by differentiating each row while keeping the other rows constant. \[ f'(x) = \begin{vmatrix} \frac{d}{dx}(x^3) & \frac{d}{dx}(\sin x) & \frac{d}{dx}(\cos x) \\ 6 & -1 & 0 \\ p & p & p^3 \end{vmatrix} + \begin{vmatrix} x^3 & \sin x & \cos x \\ \frac{d}{dx}(6) & \frac{d}{dx}(-1) & \frac{d}{dx}(0) \\ p & p & p^3 \end{vmatrix} + \begin{vmatrix} x^3 & \sin x & \cos x \\ 6 & -1 & 0 \\ \frac{d}{dx}(p) & \frac{d}{dx}(p) & \frac{d}{dx}(p^3) \end{vmatrix} \] ### Step 2: Calculate the Derivatives Calculating the derivatives of the first row: - \( \frac{d}{dx}(x^3) = 3x^2 \) - \( \frac{d}{dx}(\sin x) = \cos x \) - \( \frac{d}{dx}(\cos x) = -\sin x \) The second row is constant, so its derivative is zero. The third row contains \( p \), which is a constant, thus its derivative is also zero. So, we have: \[ f'(x) = \begin{vmatrix} 3x^2 & \cos x & -\sin x \\ 6 & -1 & 0 \\ p & p & p^3 \end{vmatrix} \] ### Step 3: Evaluate \( f'(0) \) Now we substitute \( x = 0 \): \[ f'(0) = \begin{vmatrix} 3(0)^2 & \cos(0) & -\sin(0) \\ 6 & -1 & 0 \\ p & p & p^3 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 0 \\ 6 & -1 & 0 \\ p & p & p^3 \end{vmatrix} \] ### Step 4: Calculate the Determinant Now we compute the determinant: \[ f'(0) = 0 \cdot \begin{vmatrix} -1 & 0 \\ p & p^3 \end{vmatrix} - 1 \cdot \begin{vmatrix} 6 & 0 \\ p & p^3 \end{vmatrix} + 0 \cdot \begin{vmatrix} 6 & -1 \\ p & p \end{vmatrix} \] Calculating the second determinant: \[ \begin{vmatrix} 6 & 0 \\ p & p^3 \end{vmatrix} = 6p^3 - 0 = 6p^3 \] Thus, \[ f'(0) = -6p^3 \] ### Final Answer The value of \( f'(0) \) is \[ \boxed{-6p^3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Cosider the function f(x)=|{:(x^(3),sin x,cos x),(6,-1,0),(p,p^(2),p^(3)):}| , where p is a constant. What is the value of f'(0) ?

Consider the function f(x)=|{:(x^(3),sinx,cosx),(6,-1,0),(p,p^2,p^(3)):}| where p is a constant. What is the value of p for which f''(0)=0 ?

Cosider the function f(x)=|{:(x^(3),sin x,cos x),(6,-1,0),(p,p^(2),p^(3)):}| , where p is a constant. What is the value of p for which f''(0) = 0 ?

Consider the function f(x) = |(x^3,sinx,cosx),(6,-1,0),(p,p^2,p^3)|, where p is constant. What is the value of f'(0) ? What is the value of p for which f''(0)=0

Let f(x) = |{:(x^(3), sinx,cosx),(6,-1,0),(p,p^(2),p^(3)):}| where p is a constant. Then d^(3)/dx^(3){f(x)} at x=0 is

If f(x)=|{:(x^(3),x^(4),3x^(2)),(1,-6,4),(p,p^(2),p^(3)):}| , where p is a constant, then (d^(3))/(dx^(3))(f(x)) , is

Let f(x)=|[x^3,sinx,cosx],[6,-1, 0],[p, p^2,p^3]|,w h e r ep is a constant. Then (d^3)/(dx^3)(f(x)) at x=0 is (a)p (b) p-p^3 (c)p+p^3 (d) independent of p

Consider the function {:( f(x) (P(X))/(sin (x-2)), x ne 2 ),(=7,x=2):} Where P(x) is a polynomial such that P' ' (x) is always a constant and P(3) = 9. If f(x) is continuous at x = 2, then P(5) is equal to ________.