Home
Class 14
MATHS
Consider the function f(x)=|{:(x^(3),s...

Consider the function
`f(x)=|{:(x^(3),sinx,cosx),(6,-1,0),(p,p^2,p^(3)):}|` where p is a constant.
What is the value of p for which `f''(0)=0` ?

A

A. `-1/6" or "0`

B

B. `-1` or 0

C

C. `-1/6` or 0

D

D. `-1` or 0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( p \) such that \( f''(0) = 0 \) for the function defined as: \[ f(x) = \begin{vmatrix} x^3 & \sin x & \cos x \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix} \] ### Step 1: Differentiate \( f(x) \) to find \( f'(x) \) Using the property of determinants, we differentiate the first row while keeping the other rows constant. The derivative of \( x^3 \) is \( 3x^2 \), the derivative of \( \sin x \) is \( \cos x \), and the derivative of \( \cos x \) is \( -\sin x \). Thus, we have: \[ f'(x) = \begin{vmatrix} 3x^2 & \cos x & -\sin x \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix} \] ### Step 2: Differentiate \( f'(x) \) to find \( f''(x) \) Now we differentiate \( f'(x) \) again. The first row will be differentiated again: - The derivative of \( 3x^2 \) is \( 6x \) - The derivative of \( \cos x \) is \( -\sin x \) - The derivative of \( -\sin x \) is \( -\cos x \) Thus, we have: \[ f''(x) = \begin{vmatrix} 6x & -\sin x & -\cos x \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix} \] ### Step 3: Evaluate \( f''(0) \) Substituting \( x = 0 \): \[ f''(0) = \begin{vmatrix} 0 & 0 & -1 \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix} \] This determinant can be simplified by expanding along the first row: \[ f''(0) = 0 \cdot \begin{vmatrix} -1 & 0 \\ p^2 & p^3 \end{vmatrix} - 0 \cdot \begin{vmatrix} 6 & 0 \\ p & p^3 \end{vmatrix} - 1 \cdot \begin{vmatrix} 6 & -1 \\ p & p^2 \end{vmatrix} \] Calculating the determinant: \[ \begin{vmatrix} 6 & -1 \\ p & p^2 \end{vmatrix} = (6)(p^2) - (-1)(p) = 6p^2 + p \] Thus, we have: \[ f''(0) = - (6p^2 + p) \] ### Step 4: Set \( f''(0) = 0 \) Setting the expression equal to zero gives: \[ - (6p^2 + p) = 0 \] This simplifies to: \[ 6p^2 + p = 0 \] ### Step 5: Factor the equation Factoring out \( p \): \[ p(6p + 1) = 0 \] ### Step 6: Solve for \( p \) Setting each factor to zero gives: 1. \( p = 0 \) 2. \( 6p + 1 = 0 \) which leads to \( p = -\frac{1}{6} \) ### Conclusion The values of \( p \) for which \( f''(0) = 0 \) are: \[ p = 0 \quad \text{or} \quad p = -\frac{1}{6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Cosider the function f(x)=|{:(x^(3),sin x,cos x),(6,-1,0),(p,p^(2),p^(3)):}| , where p is a constant. What is the value of p for which f''(0) = 0 ?

Consider the function f(x)=|{:(x^(3),sinx,cosx),(6,-1,0),(p,p,p^(3)):}| where p is a constant. What is the value of f'(0) ?

Cosider the function f(x)=|{:(x^(3),sin x,cos x),(6,-1,0),(p,p^(2),p^(3)):}| , where p is a constant. What is the value of f'(0) ?

Consider the function f(x) = |(x^3,sinx,cosx),(6,-1,0),(p,p^2,p^3)|, where p is constant. What is the value of f'(0) ? What is the value of p for which f''(0)=0

Let f(x) = |{:(x^(3), sinx,cosx),(6,-1,0),(p,p^(2),p^(3)):}| where p is a constant. Then d^(3)/dx^(3){f(x)} at x=0 is

If f(x)=|{:(x^(3),x^(4),3x^(2)),(1,-6,4),(p,p^(2),p^(3)):}| , where p is a constant, then (d^(3))/(dx^(3))(f(x)) , is

Let f(x)=|[x^3,sinx,cosx],[6,-1, 0],[p, p^2,p^3]|,w h e r ep is a constant. Then (d^3)/(dx^3)(f(x)) at x=0 is (a)p (b) p-p^3 (c)p+p^3 (d) independent of p

If p is a constant and f(x) =|(x^2,x^3,x^4),(2,3,6),(p,p^2,p^3)| if f'(x)=0 have roots alpha,beta , then