Home
Class 14
MATHS
If y=log(10)x+log(x)10+log(x)x+log(10) 1...

If `y=log_(10)x+log_(x)10+log_(x)x+log_(10)` 10 then what is `((dy)/(dx))_(x=10)` equal to ?

A

10

B

2

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the given function \( y \) and evaluate \( \frac{dy}{dx} \) at \( x = 10 \). ### Step-by-Step Solution: 1. **Write the function**: \[ y = \log_{10} x + \log_x 10 + \log_x x + \log_{10} 10 \] 2. **Simplify the terms**: - We know that \( \log_{10} 10 = 1 \). - The term \( \log_x x = 1 \) (since any log of a number to its own base is 1). - Therefore, we can simplify \( y \): \[ y = \log_{10} x + \log_x 10 + 1 + 1 = \log_{10} x + \log_x 10 + 2 \] 3. **Use the change of base formula**: - Recall that \( \log_x 10 = \frac{1}{\log_{10} x} \). - Substitute this into the equation: \[ y = \log_{10} x + \frac{1}{\log_{10} x} + 2 \] 4. **Differentiate \( y \) with respect to \( x \)**: - Let \( u = \log_{10} x \). Then \( y = u + \frac{1}{u} + 2 \). - Differentiate \( y \): \[ \frac{dy}{dx} = \frac{du}{dx} + \frac{d}{dx}\left(\frac{1}{u}\right) \] - We know \( \frac{du}{dx} = \frac{1}{x \ln 10} \) and \( \frac{d}{dx}\left(\frac{1}{u}\right) = -\frac{1}{u^2} \cdot \frac{du}{dx} \): \[ \frac{dy}{dx} = \frac{1}{x \ln 10} - \frac{1}{u^2} \cdot \frac{1}{x \ln 10} \] - Substitute \( u = \log_{10} x \): \[ \frac{dy}{dx} = \frac{1}{x \ln 10} - \frac{1}{(\log_{10} x)^2} \cdot \frac{1}{x \ln 10} \] - Combine the terms: \[ \frac{dy}{dx} = \frac{1}{x \ln 10} \left(1 - \frac{1}{(\log_{10} x)^2}\right) \] 5. **Evaluate at \( x = 10 \)**: - At \( x = 10 \), we have \( \log_{10} 10 = 1 \): \[ \frac{dy}{dx} \bigg|_{x=10} = \frac{1}{10 \ln 10} \left(1 - \frac{1}{1^2}\right) = \frac{1}{10 \ln 10} (1 - 1) = \frac{1}{10 \ln 10} \cdot 0 = 0 \] ### Final Answer: \[ \frac{dy}{dx} \bigg|_{x=10} = 0 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log_(10)x+log_(e)x+log_(10)10 , then find (dy)/(dx)

If y=(1)/(log_(10)x) , then what is (dy)/(dx) equal to?

If y=(1)/(log_(10)x) then what is (dy)/(dx) equal to

If y=log_(10)x+log_(x)10+log_(x)x+log_(10)10,"find "(dy)/(dx) .

If log_(10)x+log_(10)y=2, x-y=15 then :

if x+log_(10)(1+2^(x))=x log_(10)5+log_(10)6 then x

log_(10){log10x}=1 then x