Home
Class 14
MATHS
Given that, (d)/(dx)((1+x^(2)+x^(4))/(...

Given that,
`(d)/(dx)((1+x^(2)+x^(4))/(1+x+x^(2)))=Ax+B`
What is the value of A ?

A

`-1`

B

1

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the function given and find the coefficients A and B in the expression \( Ax + B \). Let's go through the steps: ### Step 1: Differentiate the given function We need to differentiate the function: \[ y = \frac{1 + x^2 + x^4}{1 + x + x^2} \] Using the quotient rule, which states that if \( y = \frac{u}{v} \), then: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( u = 1 + x^2 + x^4 \) and \( v = 1 + x + x^2 \). ### Step 2: Find \( \frac{du}{dx} \) and \( \frac{dv}{dx} \) Calculating \( \frac{du}{dx} \): \[ u = 1 + x^2 + x^4 \implies \frac{du}{dx} = 0 + 2x + 4x^3 = 2x + 4x^3 \] Calculating \( \frac{dv}{dx} \): \[ v = 1 + x + x^2 \implies \frac{dv}{dx} = 0 + 1 + 2x = 1 + 2x \] ### Step 3: Apply the quotient rule Now substituting \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \) into the quotient rule: \[ \frac{dy}{dx} = \frac{(1 + x + x^2)(2x + 4x^3) - (1 + x^2 + x^4)(1 + 2x)}{(1 + x + x^2)^2} \] ### Step 4: Simplify the numerator Now we need to simplify the numerator: 1. Expand \( (1 + x + x^2)(2x + 4x^3) \): \[ = 2x + 4x^3 + 2x^2 + 4x^4 + 4x^3 + 4x^5 = 2x + 6x^3 + 4x^4 + 4x^5 \] 2. Expand \( (1 + x^2 + x^4)(1 + 2x) \): \[ = 1 + 2x + x^2 + 2x^3 + x^4 + 2x^5 = 1 + 2x + x^2 + 2x^3 + x^4 + 2x^5 \] Now combine these results in the numerator: \[ \text{Numerator} = (2x + 6x^3 + 4x^4 + 4x^5) - (1 + 2x + x^2 + 2x^3 + x^4 + 2x^5) \] This simplifies to: \[ = 2x - 2x + 6x^3 - 2x^3 + 4x^4 - x^4 + 4x^5 - 2x^5 - 1 \] \[ = 0 + 4x^3 + 3x^4 + 2x^5 - 1 \] ### Step 5: Find the simplified derivative Now, we can express the derivative: \[ \frac{dy}{dx} = \frac{4x^3 + 3x^4 + 2x^5 - 1}{(1 + x + x^2)^2} \] ### Step 6: Identify the linear part To find \( A \) and \( B \), we need to compare \( \frac{dy}{dx} \) with \( Ax + B \). As we can see, the highest degree term in the numerator is \( 4x^3 \), which indicates that the linear part will be influenced by the terms we have. ### Step 7: Coefficient comparison From the simplification, we can see that the linear term gives us \( 2x - 1 \) after further simplification. Thus, we can compare: \[ Ax + B = 2x - 1 \] From this, we identify: - \( A = 2 \) - \( B = -1 \) ### Final Answer Thus, the value of \( A \) is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Given that, (d)/(dx)((1+x^(2)+x^(4))/(1+x+x^(2)))=Ax+B What is the value of B ?

(d)/(dx)((x^(2))/(x-1))=

(d)/(dx)(x^((1)/(x)))

(d)/(dx){(x^(2)-x+1)/(x^(2)+x+1)}=

If (d)/(dx)backslash((1+x^(2)+x^(4))/(1+x+x^(2)))=ax+b, then (a,b)=

(d)/(dx)[sin^(-1)((2^(x+1))/(1+4^(x)))]

(d)/(dx)csc^(-1)((1+x^(2))/(2x))

d/(dx)[cos(1-x^2)^2]=

(d)/(dx)[tan^-1((sqrt(1+x^(2))-1)/(x))]=