Home
Class 14
MATHS
Given that, (d)/(dx)((1+x^(2)+x^(4))/(...

Given that,
`(d)/(dx)((1+x^(2)+x^(4))/(1+x+x^(2)))=Ax+B`
What is the value of B ?

A

`-1`

B

1

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the function \((1 + x^2 + x^4)/(1 + x + x^2)\) and express it in the form \(Ax + B\). We will then determine the value of \(B\). ### Step-by-Step Solution: 1. **Identify the Function**: We have the function: \[ f(x) = \frac{1 + x^2 + x^4}{1 + x + x^2} \] 2. **Differentiate Using the Quotient Rule**: The quotient rule states that if \(f(x) = \frac{g(x)}{h(x)}\), then: \[ f'(x) = \frac{g'(x)h(x) - g(x)h'(x)}{(h(x))^2} \] Here, \(g(x) = 1 + x^2 + x^4\) and \(h(x) = 1 + x + x^2\). 3. **Calculate \(g'(x)\) and \(h'(x)\)**: - For \(g(x)\): \[ g'(x) = 0 + 2x + 4x^3 = 2x + 4x^3 \] - For \(h(x)\): \[ h'(x) = 0 + 1 + 2x = 1 + 2x \] 4. **Substitute into the Quotient Rule**: Now substituting \(g(x)\), \(g'(x)\), \(h(x)\), and \(h'(x)\) into the quotient rule: \[ f'(x) = \frac{(2x + 4x^3)(1 + x + x^2) - (1 + x^2 + x^4)(1 + 2x)}{(1 + x + x^2)^2} \] 5. **Simplify the Numerator**: We need to expand and simplify the numerator: - Expand \((2x + 4x^3)(1 + x + x^2)\): \[ = 2x + 2x^2 + 2x^3 + 4x^3 + 4x^4 + 4x^5 = 2x + 2x^2 + 6x^3 + 4x^4 + 4x^5 \] - Expand \((1 + x^2 + x^4)(1 + 2x)\): \[ = 1 + 2x + x^2 + 2x^3 + x^4 + 2x^5 = 1 + 2x + x^2 + 2x^3 + x^4 + 2x^5 \] - Now, subtract the second expansion from the first: \[ (2x + 2x^2 + 6x^3 + 4x^4 + 4x^5) - (1 + 2x + x^2 + 2x^3 + x^4 + 2x^5) \] This simplifies to: \[ (2x - 2x) + (2x^2 - x^2) + (6x^3 - 2x^3) + (4x^4 - x^4) + (4x^5 - 2x^5) - 1 \] Which results in: \[ 0 + x^2 + 4x^3 + 3x^4 + 2x^5 - 1 \] 6. **Final Form**: The derivative simplifies to: \[ f'(x) = \frac{x^2 + 4x^3 + 3x^4 + 2x^5 - 1}{(1 + x + x^2)^2} \] We need to express this in the form \(Ax + B\). 7. **Compare Coefficients**: From the previous steps, we can see that after simplification, the linear term is \(2x\) and the constant term is \(-1\). Therefore, we have: \[ A = 2 \quad \text{and} \quad B = -1 \] ### Conclusion: The value of \(B\) is: \[ \boxed{-1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Given that, (d)/(dx)((1+x^(2)+x^(4))/(1+x+x^(2)))=Ax+B What is the value of A ?

Given that (d)/(dx)((1+x^(2)+x^(4))/(1+x+x^(2)))=Ax+B What is the value of A?

(d)/(dx)((x^(2))/(x-1))=

(d)/(dx)(x^((1)/(x)))

(d)/(dx){(x^(2)-x+1)/(x^(2)+x+1)}=

If (d)/(dx)backslash((1+x^(2)+x^(4))/(1+x+x^(2)))=ax+b, then (a,b)=

(d)/(dx)[sin^(-1)((2^(x+1))/(1+4^(x)))]

(d)/(dx)csc^(-1)((1+x^(2))/(2x))

d/(dx)[cos(1-x^2)^2]=