Home
Class 14
MATHS
Consider the parametric equation x=(a(1-...

Consider the parametric equation `x=(a(1-t^(2)))/(1+t^(2))" and "y=(2at)/(1+t^(2))`
What does the equation represent ?

A

It represents a circle of diameter a

B

It represents a circle of radius a

C

It represents a parabola

D

None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To determine what the given parametric equations represent, we start with the equations: 1. \( x = \frac{a(1 - t^2)}{1 + t^2} \) 2. \( y = \frac{2at}{1 + t^2} \) ### Step 1: Substitute \( t \) with \( \tan(\theta) \) We can express \( t \) in terms of \( \theta \) using the substitution \( t = \tan(\theta) \). This gives us: - \( t^2 = \tan^2(\theta) \) Now substituting \( t \) into the equations for \( x \) and \( y \): \[ x = \frac{a(1 - \tan^2(\theta))}{1 + \tan^2(\theta)} \] \[ y = \frac{2a\tan(\theta)}{1 + \tan^2(\theta)} \] ### Step 2: Simplify the expressions for \( x \) and \( y \) Using the identity \( 1 - \tan^2(\theta) = \cos(2\theta) \) and \( 1 + \tan^2(\theta) = \sec^2(\theta) \): \[ x = a \cdot \cos(2\theta) \] \[ y = 2a \cdot \frac{\tan(\theta)}{1 + \tan^2(\theta)} = 2a \cdot \sin(2\theta) \] ### Step 3: Use trigonometric identities Now we can rewrite \( y \): \[ y = a \cdot \sin(2\theta) \] ### Step 4: Relate \( x \) and \( y \) Now we have: \[ x = a \cdot \cos(2\theta) \] \[ y = a \cdot \sin(2\theta) \] ### Step 5: Find the relationship between \( x \) and \( y \) Using the Pythagorean identity \( \sin^2(\theta) + \cos^2(\theta) = 1 \): \[ \left(\frac{x}{a}\right)^2 + \left(\frac{y}{a}\right)^2 = \cos^2(2\theta) + \sin^2(2\theta) = 1 \] ### Step 6: Write the final equation Thus, we can express this as: \[ \frac{x^2}{a^2} + \frac{y^2}{a^2} = 1 \] This is the equation of a circle with radius \( a \). ### Conclusion The parametric equations represent a circle of radius \( a \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the parametric equation x=(a(1-t^(2)))/(1+t^(2))" and "y=(2at)/(1+t^(2)) What is (dy)/(dx) equal to ?

Consider the parametric equation x=(a(1-t^(2)))/(1+t^(2))" and "y=(2at)/(1+t^(2)) what is (d^(2)y)/(dx^(2)) equal to

The parametre equations x=(2a(1-t^(2)))/(1+t^(2)) and y=(4at)/(1+t^(2)) represents a circle whose radius is

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

The eccentricity of the conic x=3((1-t^(2))/(1+t^(2))) and y=(2t)/(1+t^(2)) is

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

The conic having parametric representation x=sqrt3((1-t^(2)/(1+t^(2))),y(=2t)/(1+t^(2)) is

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=