Home
Class 14
MATHS
Consider the parametric equation x=(a(1-...

Consider the parametric equation `x=(a(1-t^(2)))/(1+t^(2))" and "y=(2at)/(1+t^(2))`
What is `(dy)/(dx)` equal to ?

A

`y//x`

B

`-y//x`

C

`x//y`

D

`-x//y`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the given parametric equations \(x = \frac{a(1 - t^2)}{1 + t^2}\) and \(y = \frac{2at}{1 + t^2}\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) We start with the equation for \(x\): \[ x = \frac{a(1 - t^2)}{1 + t^2} \] Using the quotient rule, where \(u = a(1 - t^2)\) and \(v = 1 + t^2\): \[ \frac{dx}{dt} = \frac{v \frac{du}{dt} - u \frac{dv}{dt}}{v^2} \] Calculating \(\frac{du}{dt}\) and \(\frac{dv}{dt}\): - \(\frac{du}{dt} = a(-2t)\) - \(\frac{dv}{dt} = 2t\) Now substituting into the quotient rule: \[ \frac{dx}{dt} = \frac{(1 + t^2)(-2at) - a(1 - t^2)(2t)}{(1 + t^2)^2} \] \[ = \frac{-2at - 2at^3 - 2at + 2at^3}{(1 + t^2)^2} \] \[ = \frac{-4at}{(1 + t^2)^2} \] ### Step 2: Differentiate \(y\) with respect to \(t\) Now we differentiate \(y\): \[ y = \frac{2at}{1 + t^2} \] Using the quotient rule again: \[ \frac{dy}{dt} = \frac{(1 + t^2)(2a) - 2at(2t)}{(1 + t^2)^2} \] \[ = \frac{(2a + 2at^2 - 4at^2)}{(1 + t^2)^2} \] \[ = \frac{2a - 2at^2}{(1 + t^2)^2} \] \[ = \frac{2a(1 - t^2)}{(1 + t^2)^2} \] ### Step 3: Find \(\frac{dy}{dx}\) Now we can find \(\frac{dy}{dx}\) using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{\frac{2a(1 - t^2)}{(1 + t^2)^2}}{\frac{-4at}{(1 + t^2)^2}} \] The \((1 + t^2)^2\) cancels out: \[ \frac{dy}{dx} = \frac{2a(1 - t^2)}{-4at} \] \[ = \frac{1 - t^2}{-2t} \] \[ = -\frac{1 - t^2}{2t} \] ### Final Answer Thus, the value of \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = -\frac{1 - t^2}{2t} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the parametric equation x=(a(1-t^(2)))/(1+t^(2))" and "y=(2at)/(1+t^(2)) what is (d^(2)y)/(dx^(2)) equal to

Consider the parametric equation x=(a(1-t^(2)))/(1+t^(2))" and "y=(2at)/(1+t^(2)) What does the equation represent ?

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=(1-t^(2))/(1+t^(2))" and "y=(2t)/(1+t^(2))," then: "(dy)/(dx)|_(t=1) is

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)), prove that (dy)/(dx)+(x)/(y)=0

Find (dy)/(dx), when x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2))

If sin x=(2t)/(1+t^(2)),tan y=(2t)/(1-t^(2)), find (dy)/(dx)