Home
Class 14
MATHS
Consider the parametric equation x=(a(1-...

Consider the parametric equation `x=(a(1-t^(2)))/(1+t^(2))" and "y=(2at)/(1+t^(2))`
what is `(d^(2)y)/(dx^(2))` equal to

A

`(a^(2))/(y^(2))`

B

`(a^(2))/(x^(2))`

C

`(a^(2))/(x^(2))`

D

-`(a^(2))/(y^(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{d^2y}{dx^2}\) for the given parametric equations \(x = \frac{a(1 - t^2)}{1 + t^2}\) and \(y = \frac{2at}{1 + t^2}\), we will follow these steps: ### Step 1: Differentiate \(x\) and \(y\) with respect to \(t\) 1. Differentiate \(x\): \[ x = \frac{a(1 - t^2)}{1 + t^2} \] Using the quotient rule: \[ \frac{dx}{dt} = \frac{(1 + t^2)(-2at) - a(1 - t^2)(2t)}{(1 + t^2)^2} \] Simplifying: \[ \frac{dx}{dt} = \frac{-2at(1 + t^2) + 2at(1 - t^2)}{(1 + t^2)^2} = \frac{-2at - 2at^3 + 2at - 2at^3}{(1 + t^2)^2} = \frac{-4at^3}{(1 + t^2)^2} \] 2. Differentiate \(y\): \[ y = \frac{2at}{1 + t^2} \] Using the quotient rule: \[ \frac{dy}{dt} = \frac{(1 + t^2)(2a) - 2at(2t)}{(1 + t^2)^2} = \frac{2a(1 + t^2 - 2t^2)}{(1 + t^2)^2} = \frac{2a(1 - t^2)}{(1 + t^2)^2} \] ### Step 2: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\frac{2a(1 - t^2)}{(1 + t^2)^2}}{\frac{-4at^3}{(1 + t^2)^2}} = \frac{2a(1 - t^2)}{-4at^3} = \frac{-(1 - t^2)}{2t^3} \] ### Step 3: Differentiate \(\frac{dy}{dx}\) with respect to \(t\) Now we differentiate \(\frac{dy}{dx}\): \[ \frac{d^2y}{dx^2} = \frac{d}{dt}\left(\frac{dy}{dx}\right) \cdot \frac{1}{\frac{dx}{dt}} \] Differentiating \(\frac{dy}{dx}\): \[ \frac{d}{dt}\left(\frac{-(1 - t^2)}{2t^3}\right) = \frac{-(-2t)(2t^3) - (1 - t^2)(6t^2)}{(2t^3)^2} = \frac{4t^4 - 6t^2(1 - t^2)}{4t^6} \] Simplifying: \[ = \frac{4t^4 - 6t^2 + 6t^4}{4t^6} = \frac{10t^4 - 6t^2}{4t^6} = \frac{2(5t^4 - 3t^2)}{4t^6} = \frac{5t^4 - 3t^2}{2t^6} \] Now substituting \(\frac{dx}{dt}\): \[ \frac{d^2y}{dx^2} = \frac{5t^4 - 3t^2}{2t^6} \cdot \frac{(1 + t^2)^2}{-4at^3} = \frac{(5t^4 - 3t^2)(1 + t^2)^2}{-8at^6} \] ### Step 4: Substitute \(x\) and \(y\) to express in terms of \(y\) Using the relation \(x^2 + y^2 = a^2\): \[ x^2 + y^2 = a^2 \implies y^2 = a^2 - x^2 \] Thus, we can express \(\frac{d^2y}{dx^2}\) in terms of \(y\): \[ \frac{d^2y}{dx^2} = -\frac{a^2}{y^3} \] ### Final Answer \[ \frac{d^2y}{dx^2} = -\frac{a^2}{y} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the parametric equation x=(a(1-t^(2)))/(1+t^(2))" and "y=(2at)/(1+t^(2)) What is (dy)/(dx) equal to ?

If x=t^(2),y=t^(3) what is (d^(2)y)/(dx^(2)) equal to ?

Consider the parametric equation x=(a(1-t^(2)))/(1+t^(2))" and "y=(2at)/(1+t^(2)) What does the equation represent ?

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)), prove that (dy)/(dx)+(x)/(y)=0

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=(1-t^(2))/(1+t^(2))" and "y=(2t)/(1+t^(2))," then: "(dy)/(dx)|_(t=1) is

If x=cos(2t)and y=sin^(2)t , then what is (d^(2)y)/(dx^(2)) equal to?

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to