Home
Class 14
MATHS
Consider the curve x=a(cos theta+thetasi...

Consider the curve `x=a(cos theta+thetasintheta)` and `y=a(sin theta-thetacostheta)`.
What is `(dy)/(dx)` equal to ?

A

`tan theta`

B

`cot theta`

C

`sin 2 theta`

D

`cos 2 theta`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the given parametric equations \(x = a(\cos \theta + \theta \sin \theta)\) and \(y = a(\sin \theta - \theta \cos \theta)\), we will use the formula: \[ \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} \] ### Step 1: Calculate \(\frac{dy}{d\theta}\) Given: \[ y = a(\sin \theta - \theta \cos \theta) \] Using the product rule for differentiation, we differentiate \(y\) with respect to \(\theta\): \[ \frac{dy}{d\theta} = a\left(\cos \theta - \left(\cos \theta + \theta (-\sin \theta)\right)\right) \] \[ = a\left(\cos \theta - \cos \theta + \theta \sin \theta\right) \] \[ = a\theta \sin \theta \] ### Step 2: Calculate \(\frac{dx}{d\theta}\) Given: \[ x = a(\cos \theta + \theta \sin \theta) \] Again using the product rule for differentiation: \[ \frac{dx}{d\theta} = a\left(-\sin \theta + \left(\sin \theta + \theta \cos \theta\right)\right) \] \[ = a\left(-\sin \theta + \sin \theta + \theta \cos \theta\right) \] \[ = a\theta \cos \theta \] ### Step 3: Calculate \(\frac{dy}{dx}\) Now we can substitute \(\frac{dy}{d\theta}\) and \(\frac{dx}{d\theta}\) into the formula for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{a\theta \sin \theta}{a\theta \cos \theta} \] The \(a\) and \(\theta\) terms cancel out (assuming \(\theta \neq 0\)): \[ \frac{dy}{dx} = \frac{\sin \theta}{\cos \theta} = \tan \theta \] ### Final Answer Thus, we find that: \[ \frac{dy}{dx} = \tan \theta \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the curve x=a(cos theta+theta sin theta) and y=a(sin theta-theta cos theta). What is (dy)/(dx) equal to? What is (d^(2)y)/(dx^(2)) equal to?

Consider the curve x=a(cos theta+thetasintheta) and y=a(sin theta-thetacostheta) . what is (d^(2)y)/(dx^(2)) equal to ?

If x =a (cos theta +theta sin theta ), y =a (sin theta -theta costheta ) ,then (dy)/(dx) =

Consider the curve x=a(cos theta+thetasin theta)and y=a(sin theta-thetacos theta). If y=xln x+xe^(x) , then what is the value of (dy)/(dx) at x = 1?

Find (dy)/(dx), when x=a(cos theta+theta sin theta) and y=a(sin theta-theta cos theta)

Find (dy)/(dx) , if x=a(costheta+thetasintheta) , y=a(sintheta-thetacostheta)

If x=a(costheta+thetasintheta),y=a(sintheta-thetacostheta)," then "(dy)/(dx)=