Home
Class 14
MATHS
Consider the curve x=a(cos theta+thetasi...

Consider the curve `x=a(cos theta+thetasintheta)` and `y=a(sin theta-thetacostheta)`.
what is `(d^(2)y)/(dx^(2))` equal to ?

A

`sec^(2)theta`

B

`-"cosec"^(2)theta`

C

`(sec^(2)theta)/(atheta)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{d^2y}{dx^2}\) for the given parametric equations \(x = a(\cos \theta + \theta \sin \theta)\) and \(y = a(\sin \theta - \theta \cos \theta)\), we will follow these steps: ### Step 1: Find \(\frac{dy}{d\theta}\) and \(\frac{dx}{d\theta}\) 1. Differentiate \(y\) with respect to \(\theta\): \[ \frac{dy}{d\theta} = a\left(\cos \theta - \theta \sin \theta - \sin \theta\right) = a\left(\cos \theta - \sin \theta - \theta \sin \theta\right) \] 2. Differentiate \(x\) with respect to \(\theta\): \[ \frac{dx}{d\theta} = a\left(-\sin \theta + \theta \cos \theta + \cos \theta\right) = a\left(\cos \theta - \sin \theta + \theta \cos \theta\right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the curve x=a(cos theta+thetasintheta) and y=a(sin theta-thetacostheta) . What is (dy)/(dx) equal to ?

Consider the curve x=a(cos theta+theta sin theta) and y=a(sin theta-theta cos theta). What is (dy)/(dx) equal to? What is (d^(2)y)/(dx^(2)) equal to?

Find (dy)/(dx), when x=a(cos theta+theta sin theta) and y=a(sin theta-theta cos theta)

Find (dy)/(dx) , if x=a(costheta+thetasintheta) , y=a(sintheta-thetacostheta)

Consider the curve x=a(cos theta+thetasin theta)and y=a(sin theta-thetacos theta). If y=xln x+xe^(x) , then what is the value of (dy)/(dx) at x = 1?

If x=a(costheta+thetasintheta),y=a(sintheta-thetacostheta)," then "(dy)/(dx)=

If x=a(cos 2 theta+2 theta sin 2 theta) " and" y=a(sin 2 theta - 2 theta cos 2 theta) , find (d^(2)y)/(dx^(2)) " at" theta =(pi)/(8) .

If x=a(theta-sin theta),y=a(1+cos theta) find (d^(2)y)/(dx^(2))