Home
Class 14
MATHS
If y=xlnx+"xe"^(x). then what is the val...

If `y=xlnx+"xe"^(x)`. then what is the value of `(dy)/(dx)` at `x=1` ?

A

`1+e`

B

`1-e`

C

`1+2e`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\frac{dy}{dx}\) at \(x=1\) for the function \(y = x \ln x + x e^x\), we will follow these steps: ### Step 1: Differentiate the function We need to differentiate \(y\) with respect to \(x\). The function consists of two parts: \(x \ln x\) and \(x e^x\). We will use the product rule for differentiation, which states that if \(y = u \cdot v\), then \(\frac{dy}{dx} = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx}\). Let: - \(u_1 = x\) and \(v_1 = \ln x\) for the first term \(x \ln x\) - \(u_2 = x\) and \(v_2 = e^x\) for the second term \(x e^x\) #### Differentiate \(x \ln x\): Using the product rule: \[ \frac{d}{dx}(x \ln x) = x \cdot \frac{d}{dx}(\ln x) + \ln x \cdot \frac{d}{dx}(x) \] \[ = x \cdot \frac{1}{x} + \ln x \cdot 1 = 1 + \ln x \] #### Differentiate \(x e^x\): Using the product rule: \[ \frac{d}{dx}(x e^x) = x \cdot \frac{d}{dx}(e^x) + e^x \cdot \frac{d}{dx}(x) \] \[ = x e^x + e^x \] ### Step 2: Combine the derivatives Now we combine the derivatives of both parts: \[ \frac{dy}{dx} = (1 + \ln x) + (x e^x + e^x) \] \[ = 1 + \ln x + e^x + x e^x \] ### Step 3: Substitute \(x = 1\) Now we substitute \(x = 1\) into the derivative: \[ \frac{dy}{dx} \bigg|_{x=1} = 1 + \ln(1) + e^1 + 1 \cdot e^1 \] Since \(\ln(1) = 0\) and \(e^1 = e\): \[ = 1 + 0 + e + e = 1 + 2e \] ### Final Answer Thus, the value of \(\frac{dy}{dx}\) at \(x = 1\) is: \[ \frac{dy}{dx} \bigg|_{x=1} = 1 + 2e \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x . Then what is the value of (dy)/(dx) at x=1 ?

Consider the curve x=a(cos theta+thetasin theta)and y=a(sin theta-thetacos theta). If y=xln x+xe^(x) , then what is the value of (dy)/(dx) at x = 1?

If y=(x+1)/(x-1) , then what is the value of (dy)/(dx) ?

If y=|sinx|^(|x|) , then what is the value of (dy)/(dx) at x=-(pi)/(6) ?

If y=lnsqrt(tanx), then what is the value of (dy)/(dx) at x=(pi)/(4)?

if y^(x)-x^(y)=1 then the value of (dy)/(dx) at x=1 is

if 2^x+2^y=2^(x+y) then the value of (dy)/(dx) at x=y=1

If y=1/(x+1) then find the value of dy/dx