Home
Class 14
MATHS
If y=sin(ax+b), then what is (d^(2)y)/(d...

If `y=sin(ax+b)`, then what is `(d^(2)y)/(dx^(2))` at `x=-(b)/(a)`. where a and b are constants and `a!=0` ?

A

0

B

`-1`

C

`sin(a-b)`

D

`sin(a+b)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the second derivative of the function \( y = \sin(ax + b) \) at the point \( x = -\frac{b}{a} \). ### Step-by-Step Solution: 1. **Write down the function:** \[ y = \sin(ax + b) \] 2. **Differentiate \( y \) with respect to \( x \) to find the first derivative \( \frac{dy}{dx} \):** Using the chain rule, we differentiate: \[ \frac{dy}{dx} = \cos(ax + b) \cdot \frac{d}{dx}(ax + b) = \cos(ax + b) \cdot a = a \cos(ax + b) \] 3. **Differentiate \( \frac{dy}{dx} \) to find the second derivative \( \frac{d^2y}{dx^2} \):** Differentiate \( \frac{dy}{dx} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}(a \cos(ax + b)) = a \cdot (-\sin(ax + b)) \cdot \frac{d}{dx}(ax + b) = -a^2 \sin(ax + b) \] 4. **Evaluate \( \frac{d^2y}{dx^2} \) at \( x = -\frac{b}{a} \):** Substitute \( x = -\frac{b}{a} \) into the second derivative: \[ \frac{d^2y}{dx^2} \bigg|_{x = -\frac{b}{a}} = -a^2 \sin\left(a\left(-\frac{b}{a}\right) + b\right) \] Simplifying the argument of the sine function: \[ = -a^2 \sin\left(-b + b\right) = -a^2 \sin(0) \] Since \( \sin(0) = 0 \): \[ = -a^2 \cdot 0 = 0 \] ### Final Result: \[ \frac{d^2y}{dx^2} \bigg|_{x = -\frac{b}{a}} = 0 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin(ax+b) , then what is (d^(2)y)/(dx^(2)) at x=-(b)/(a) , where a, be are constants and a ne 0 ?

If y^(2) = ax^(2) + b , " then " (d^(2)y)/( dx^(2))

If y=ax^(5)+(b)/(x^(4))," then "(d^(2)y)/(dx^(2))=

If y=A cos x+B sin x then prove that (d^(2)y)/(dx^(2))+y=0

If y = log(ax + b) , then (d^2 y)/(dx^2) is

If y=Pe^(ax)+Qe^(bx) , show that : (d^(2)y)/(dx^(2))-(a+b)dy/dx+aby=0 .

If y=A sin mx+B cos mx, then prove that (d^(2)y)/(dx^(2))+m^(2)y=0

If y=A cos nx+B sin nx, show that (d^(2)y)/(dx^(2))+n^(2)y=0

If y=A cos nx+B sin nx, show that(d^(2)y)/(dx^(2))+n^(2)y=0