Home
Class 14
MATHS
If x^(m)+y^(m)=1 such that (dy)/(dx)=-(x...

If `x^(m)+y^(m)=1` such that `(dy)/(dx)=-(x)/(y)`. then what should be the value of m ?

A

0

B

1

C

2

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation and the derivative condition. 1. **Given Equation**: \[ x^m + y^m = 1 \] 2. **Differentiating Both Sides**: We will differentiate both sides of the equation with respect to \(x\). Using implicit differentiation, we apply the chain rule: \[ \frac{d}{dx}(x^m) + \frac{d}{dx}(y^m) = \frac{d}{dx}(1) \] This gives us: \[ mx^{m-1} + my^{m-1} \frac{dy}{dx} = 0 \] 3. **Substituting the Given Derivative**: We know from the problem statement that: \[ \frac{dy}{dx} = -\frac{x}{y} \] Substituting this into our differentiated equation: \[ mx^{m-1} + my^{m-1} \left(-\frac{x}{y}\right) = 0 \] 4. **Simplifying the Equation**: Rearranging the equation gives: \[ mx^{m-1} - mx^{m-1}y^{m-2} = 0 \] Factoring out \(mx^{m-1}\): \[ mx^{m-1}(1 - y^{m-2}) = 0 \] 5. **Finding Possible Values for \(m\)**: For the product to be zero, either \(mx^{m-1} = 0\) or \(1 - y^{m-2} = 0\). Since \(x\) and \(y\) cannot be zero (as they are part of the equation \(x^m + y^m = 1\)), we focus on: \[ 1 - y^{m-2} = 0 \implies y^{m-2} = 1 \] This implies \(y = 1\) or \(m - 2 = 0\) (since \(y\) must be a real number). 6. **Solving for \(m\)**: If \(y = 1\), substituting back into the original equation \(x^m + 1^m = 1\) gives \(x^m = 0\), which is not possible. Therefore, we set: \[ m - 2 = 0 \implies m = 2 \] 7. **Conclusion**: The only value that satisfies the conditions is \(m = 2\). ### Final Answer: The value of \(m\) is \(2\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(m)y^(n)=1, prove that (dy)/(dx)=-(my)/(nx)

If x^(m)*y^(n)=(x+y)^(m+n), show that (dy)/(dx)=(y)/(x)

If y=(x+1)/(x-1) , then what is the value of (dy)/(dx) ?

if x^(m)*y^(n)=1 then (dy)/(dx)

If x^(m)y^(n)=(x+y)^(m+n) prove that (dy)/(dx)=(y)/(x)

If x^(m)y^(n)=(x+y)^(m+n), prove that (dy)/(dx)=(y)/(x)

If x^(m)y^(n)=(x+y)^(m+n), prove that (dy)/(dx)=(y)/(x)

If x^(m)y^(n)=(x+y)^(m+n), Prove that (dy)/(dx)=(y)/(x)

If x^(m)y^(n)=(x+y)^(m+n), prove that (dy)/(dx)=(y)/(x)

If x^(4)y^(5) =(x+y) ^(m+1) and (dy)/(dx) =(y)/(x) ,then m=