Home
Class 14
MATHS
If y=ln(e^(mx)+e^(-mx)). Then what is th...

If `y=ln(e^(mx)+e^(-mx))`. Then what is the value of `(dy)/(dx)` at `x=0` ?

A

`-1`

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\frac{dy}{dx}\) at \(x=0\) for the function \(y = \ln(e^{mx} + e^{-mx})\), we will follow these steps: ### Step 1: Differentiate the function We start with the function: \[ y = \ln(e^{mx} + e^{-mx}) \] To differentiate \(y\) with respect to \(x\), we will use the chain rule. The derivative of \(\ln(u)\) is \(\frac{1}{u} \cdot \frac{du}{dx}\), where \(u = e^{mx} + e^{-mx}\). ### Step 2: Find \(u\) and its derivative Let: \[ u = e^{mx} + e^{-mx} \] Now, we differentiate \(u\) with respect to \(x\): \[ \frac{du}{dx} = \frac{d}{dx}(e^{mx}) + \frac{d}{dx}(e^{-mx}) = m e^{mx} - m e^{-mx} \] ### Step 3: Apply the chain rule Now we can apply the chain rule: \[ \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} = \frac{1}{e^{mx} + e^{-mx}} \cdot (m e^{mx} - m e^{-mx}) \] This simplifies to: \[ \frac{dy}{dx} = \frac{m(e^{mx} - e^{-mx})}{e^{mx} + e^{-mx}} \] ### Step 4: Evaluate at \(x = 0\) Now we need to evaluate \(\frac{dy}{dx}\) at \(x = 0\): \[ e^{m \cdot 0} = e^0 = 1 \quad \text{and} \quad e^{-m \cdot 0} = e^0 = 1 \] Thus: \[ u = e^{0} + e^{0} = 1 + 1 = 2 \] Now substituting \(x = 0\) into the derivative: \[ \frac{dy}{dx} \bigg|_{x=0} = \frac{m(1 - 1)}{1 + 1} = \frac{m \cdot 0}{2} = 0 \] ### Final Answer The value of \(\frac{dy}{dx}\) at \(x=0\) is: \[ \frac{dy}{dx} = 0 \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=ln(e^(mx)+e^(-mx)) , then what is (dy)/(dx) at x = 0 equal to ?

If y=e^(1+log_(e)x) , then the value of (dy)/(dx) is equal to

If y=log(e^(x^2)) , then dy/dx=?

e^(mx).cos n x

If y = log_(a) x then (dy )/(dx) at x =e is

If y=ae^(mx)+be^(-mx) then (d^(2)y)/(dx^(2)) is

If y=e^(tan x(ln sin x)) then (dy)/(dx) is equal to

If y=log((3+e^x)/(3-e^x)) , then dy/dx=?

If y = log (cos e^(x)), then (dy)/(dx) is:

If lim_(x to 0) (1)/(x^(2)) (e^(2mx) = e^(x) - x) = (3)/(2) then the value of m is _____