Home
Class 14
MATHS
Consider the following statements I. I...

Consider the following statements
I. If `y=ln(secx+tanx)`. then `(dy)/(dx)=secx`
II. If `y=ln("cosec"x-cotx)`. then `(dy)/(dx)="cosec"x`
Which of the above statements is/are correct ?

A

Only I

B

Only 2

C

Both 1 and 2

D

Neither 1 nor 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to verify the correctness of the two statements regarding derivatives of logarithmic functions. Let's go through each statement step by step. ### Statement I: **If \( y = \ln(\sec x + \tan x) \), then \( \frac{dy}{dx} = \sec x \)** 1. **Differentiate \( y \)**: \[ y = \ln(\sec x + \tan x) \] Using the chain rule, the derivative is: \[ \frac{dy}{dx} = \frac{1}{\sec x + \tan x} \cdot \frac{d}{dx}(\sec x + \tan x) \] 2. **Differentiate \( \sec x + \tan x \)**: The derivatives of \( \sec x \) and \( \tan x \) are: \[ \frac{d}{dx}(\sec x) = \sec x \tan x \] \[ \frac{d}{dx}(\tan x) = \sec^2 x \] Therefore: \[ \frac{d}{dx}(\sec x + \tan x) = \sec x \tan x + \sec^2 x \] 3. **Substituting back**: \[ \frac{dy}{dx} = \frac{1}{\sec x + \tan x} \cdot (\sec x \tan x + \sec^2 x) \] 4. **Factor out \( \sec x \)**: \[ \frac{dy}{dx} = \frac{\sec x (\tan x + \sec x)}{\sec x + \tan x} \] 5. **Simplify**: The numerator and denominator are the same: \[ \frac{dy}{dx} = \sec x \] Thus, **Statement I is correct**. ### Statement II: **If \( y = \ln(\csc x - \cot x) \), then \( \frac{dy}{dx} = \csc x \)** 1. **Differentiate \( y \)**: \[ y = \ln(\csc x - \cot x) \] Using the chain rule: \[ \frac{dy}{dx} = \frac{1}{\csc x - \cot x} \cdot \frac{d}{dx}(\csc x - \cot x) \] 2. **Differentiate \( \csc x - \cot x \)**: The derivatives of \( \csc x \) and \( \cot x \) are: \[ \frac{d}{dx}(\csc x) = -\csc x \cot x \] \[ \frac{d}{dx}(\cot x) = -\csc^2 x \] Therefore: \[ \frac{d}{dx}(\csc x - \cot x) = -\csc x \cot x + \csc^2 x \] 3. **Substituting back**: \[ \frac{dy}{dx} = \frac{1}{\csc x - \cot x} \cdot (-\csc x \cot x + \csc^2 x) \] 4. **Factor out \( \csc x \)**: \[ \frac{dy}{dx} = \frac{\csc x (\csc x - \cot x)}{\csc x - \cot x} \] 5. **Simplify**: The numerator and denominator are the same: \[ \frac{dy}{dx} = \csc x \] Thus, **Statement II is also correct**. ### Conclusion: Both statements are correct. Therefore, the answer is that both statements are true.
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the following statements: 1. If y=ln(secx+tanx), then (dy)/(dx)=secx. 2. If y=ln("cosecx-cotx) , then (dy)/(dx)="cosec x". Which of the above is/are correct?

If y=log (cosec x -cotx) ,then (dy)/(dx)

If y= log (secx+tan x ) ,then (dy)/(dx)

If y= e^(cosec _x) ,then (dy)/(dx) =

If y=secx*tanx then dy/dx=

If y=tan^(-1) ("cosec x"-cot x),"then " dy/dx=

If y=x^(log(log x)); then (dy)/(dx) is

If y=(tanx+cotx)/(tanx-cotx)," then: "(dy)/(dx)=

If y =log (log x) then (dy)/(dx) =

If y= e^(log (log x )) ,then (dy)/(dx) =