Home
Class 14
MATHS
If y=(x+1)/(x-1), then what is the value...

If `y=(x+1)/(x-1)`, then what is the value of `(dy)/(dx)` ?

A

`(-2)/(x-1)`

B

`(-2)/((x-1)^(2))`

C

`(2)/((x-1)^(2))`

D

`(2)/((x-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \frac{x + 1}{x - 1} \), we will use the quotient rule. The quotient rule states that if you have a function in the form of \( y = \frac{u}{v} \), then the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( u = x + 1 \) and \( v = x - 1 \). ### Step 1: Identify \( u \) and \( v \) Let: - \( u = x + 1 \) - \( v = x - 1 \) ### Step 2: Find \( \frac{du}{dx} \) and \( \frac{dv}{dx} \) Now we need to find the derivatives of \( u \) and \( v \): - \( \frac{du}{dx} = 1 \) (since the derivative of \( x + 1 \) is 1) - \( \frac{dv}{dx} = 1 \) (since the derivative of \( x - 1 \) is 1) ### Step 3: Apply the Quotient Rule Now we can apply the quotient rule: \[ \frac{dy}{dx} = \frac{(x - 1)(1) - (x + 1)(1)}{(x - 1)^2} \] ### Step 4: Simplify the numerator Now simplify the numerator: \[ = \frac{x - 1 - (x + 1)}{(x - 1)^2} \] Distributing the negative sign: \[ = \frac{x - 1 - x - 1}{(x - 1)^2} \] This simplifies to: \[ = \frac{-2}{(x - 1)^2} \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{-2}{(x - 1)^2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=|sinx|^(|x|) , then what is the value of (dy)/(dx) at x=-(pi)/(6) ?

If y=xlnx+"xe"^(x) . then what is the value of (dy)/(dx) at x=1 ?

If y=x . Then what is the value of (dy)/(dx) at x=1 ?

y=[(1-tan x)/(1+tan x)], then the value of (dy)/(dx)

If y=(x+1)/(x-1), then what is (dy)/(dx) equal to?