Home
Class 14
MATHS
If sqrt(x)+sqrt(y)=2 then what is (dy)/(...

If `sqrt(x)+sqrt(y)=2` then what is `(dy)/(dx)` at `y=1` equal to ?

A

5

B

4

C

2

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \(\frac{dy}{dx}\) given the equation \(\sqrt{x} + \sqrt{y} = 2\) at the point where \(y = 1\). ### Step-by-Step Solution: 1. **Differentiate the equation**: Start with the equation: \[ \sqrt{x} + \sqrt{y} = 2 \] Differentiate both sides with respect to \(x\): \[ \frac{d}{dx}(\sqrt{x}) + \frac{d}{dx}(\sqrt{y}) = \frac{d}{dx}(2) \] This gives: \[ \frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \frac{dy}{dx} = 0 \] 2. **Rearrange the equation**: Isolate \(\frac{dy}{dx}\): \[ \frac{1}{2\sqrt{y}} \frac{dy}{dx} = -\frac{1}{2\sqrt{x}} \] Multiply both sides by \(2\sqrt{y}\): \[ \frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}} \] 3. **Find \(\sqrt{x}\) when \(y = 1\)**: Substitute \(y = 1\) into the original equation: \[ \sqrt{x} + \sqrt{1} = 2 \] This simplifies to: \[ \sqrt{x} + 1 = 2 \] Therefore: \[ \sqrt{x} = 1 \quad \Rightarrow \quad x = 1 \] 4. **Substitute \(y = 1\) and \(x = 1\) into \(\frac{dy}{dx}\)**: Now substitute \(y = 1\) and \(x = 1\) into the equation for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = -\frac{\sqrt{1}}{\sqrt{1}} = -\frac{1}{1} = -1 \] ### Final Answer: Thus, \(\frac{dy}{dx}\) at \(y = 1\) is: \[ \frac{dy}{dx} = -1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt(1-x^(2))+sqrt(1-y^(2))=a , then what is (dy)/(dx) equal to?

if sqrt(y+x)+sqrt(y-x)=c then find (dy)/(dx)

If y=tan^(-1)((5-2tansqrt(x))/(2+5tan sqrt(x))) then what is (dy)/(dx) equal to ?

if y=sqrt(x) + 1/sqrt(x) , then (dy)/(dx) at x=1 is equal to

If sqrt(x)+sqrt(y)=4, then find (dx)/(dy) at y=1

If sqrt(x)+sqrt(y)=sqrt(a)," then "(dy)/(dx)=

x sqrt(x)+y sqrt(y)=a sqrt(a) then find (dy)/(dx)

If sqrt(x)+sqrt(y)=4, then find(dx)/(dy) at y=1

If y =sqrt(x) + (1)/(sqrt(x)) , "then" 2 x . (dy)/(dx) is equal to

If y= sqrt(x-1) +sqrt( x+1) ,then (dy)/(dx)