Home
Class 14
MATHS
If x=k(theta+sintheta) and y=k(1+costhet...

If `x=k(theta+sintheta)` and `y=k(1+costheta)`. then what is the derivative of y with respect to x at `theta=pi//2` ?

A

A) `-1`

B

B) 0

C

C) 1

D

D) 2

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( y \) with respect to \( x \) at \( \theta = \frac{\pi}{2} \), we start with the given equations: \[ x = k(\theta + \sin \theta) \] \[ y = k(1 + \cos \theta) \] ### Step 1: Differentiate \( y \) with respect to \( \theta \) We need to find \( \frac{dy}{d\theta} \): \[ \frac{dy}{d\theta} = k \cdot \frac{d}{d\theta}(1 + \cos \theta) \] \[ \frac{dy}{d\theta} = k \cdot (0 - \sin \theta) = -k \sin \theta \] ### Step 2: Differentiate \( x \) with respect to \( \theta \) Now, we find \( \frac{dx}{d\theta} \): \[ \frac{dx}{d\theta} = k \cdot \frac{d}{d\theta}(\theta + \sin \theta) \] \[ \frac{dx}{d\theta} = k \cdot (1 + \cos \theta) \] ### Step 3: Find \( \frac{dy}{dx} \) Now we can find \( \frac{dy}{dx} \) using the chain rule: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{-k \sin \theta}{k(1 + \cos \theta)} \] The \( k \) cancels out: \[ \frac{dy}{dx} = \frac{-\sin \theta}{1 + \cos \theta} \] ### Step 4: Evaluate \( \frac{dy}{dx} \) at \( \theta = \frac{\pi}{2} \) Now we substitute \( \theta = \frac{\pi}{2} \): \[ \frac{dy}{dx} \bigg|_{\theta = \frac{\pi}{2}} = \frac{-\sin\left(\frac{\pi}{2}\right)}{1 + \cos\left(\frac{\pi}{2}\right)} \] We know: \[ \sin\left(\frac{\pi}{2}\right) = 1 \quad \text{and} \quad \cos\left(\frac{\pi}{2}\right) = 0 \] So: \[ \frac{dy}{dx} \bigg|_{\theta = \frac{\pi}{2}} = \frac{-1}{1 + 0} = -1 \] ### Final Answer Thus, the derivative of \( y \) with respect to \( x \) at \( \theta = \frac{\pi}{2} \) is: \[ \boxed{-1} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=k(theta+sin theta) and y=k (1+cos theta) , then what is the derivative of y with respect to x at theta=pi//2 ?

If x=a(theta+sintheta) and y=a(1-costheta) , find dy//dx .

If y=a(theta+sintheta),x=a(1-costheta)," then "(dy)/(dx)=

if x = a(theta-sintheta), y=(1+costheta) , then (dy)/(dx) is equal to

If x=theta-sintheta" and "y=1-costheta," then "(d^(2)y)/(dx^(2))=

(sintheta+sin2theta)/(1+costheta+cos2theta) =

If x=a (theta-sin theta) and y=a(1-cos theta) , find (d^(2)y)/(dx^(2)) at theta=pi.

If sin theta+costheta=sqrt(2)costheta then what is (costheta-sintheta) equal to ?