Home
Class 14
MATHS
If x=t^(2),y=t^(3) what is (d^(2)y)/(dx^...

If `x=t^(2),y=t^(3)` what is `(d^(2)y)/(dx^(2))` equal to ?

A

1

B

`(3)/(2t)`

C

`(3)/(4t)`

D

`3/2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=t^(2) and y=t^(3), find (d^(2)y)/(dx^(2))

Consider the parametric equation x=(a(1-t^(2)))/(1+t^(2))" and "y=(2at)/(1+t^(2)) what is (d^(2)y)/(dx^(2)) equal to

If x=cos(2t)and y=sin^(2)t , then what is (d^(2)y)/(dx^(2)) equal to?

If x=at^(2),y=2at, then (d^(2)y)/(dx^(2)) is equal to ( a )-(1)/(t^(2))( b) (1)/(2at^(2))(c)-(1)/(t^(3)) (d) (1)/(2at^(3))

If x=logt and y=t^(2)-1 , then what is (d^(2)y)/(dx^(2)) at t = 1 equal to?

If x=t^(2) and y=t^(3)+1 , then (d^(2)y)/(dx^(2)) is

If x = t^(2) and y = t^(3) , then (d^(2)y)/(dx^(2)) is equal to

If x = t^(2) and y = t^(3) , then (d^(2)y)/(dx^(2)) is equal to

If x=phi(t),y=Psi(t)," then "(d^(2)y)/(dx^(2)) is equal to

If x+y=t-(1)/(t),x^(2)+y^(2)=t^(2)+(1)/(t^(2)) , what is (dy)/(dx) equal to?