Home
Class 14
MATHS
If y=sin^(-1)((4x)/(1+4x^(2))) then what...

If `y=sin^(-1)((4x)/(1+4x^(2)))` then what is `(dy)/(dx)` equal to ?

A

A) `(1)/(1+4x^(2))`

B

B) `-(1)/(1+4x^(2))`

C

C) `(4)/(1+4x^(2))`

D

D) `(4x)/(1+4x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \( y = \sin^{-1}\left(\frac{4x}{1 + 4x^2}\right) \), we will follow these steps: ### Step 1: Simplify the expression We start with the function: \[ y = \sin^{-1}\left(\frac{4x}{1 + 4x^2}\right) \] We can recognize that the argument of the inverse sine function can be simplified using the double angle identity for sine. ### Step 2: Use a trigonometric substitution Let: \[ 2x = \tan(\theta) \] Then: \[ 4x = 2\tan(\theta) \] And: \[ 1 + 4x^2 = 1 + 4\tan^2(\theta) = 1 + \tan^2(\theta) \cdot 4 = \sec^2(\theta) \] Thus, we can rewrite the expression: \[ \frac{4x}{1 + 4x^2} = \frac{2\tan(\theta)}{\sec^2(\theta)} = 2\tan(\theta) \cos^2(\theta) = 2\sin(\theta) \] This gives us: \[ y = \sin^{-1}(2\sin(\theta)) \] ### Step 3: Simplify further Using the identity \( \sin^{-1}(\sin(2\theta)) = 2\theta \): \[ y = 2\theta \] Now substituting back for \( \theta \): \[ \theta = \tan^{-1}(2x) \implies y = 2\tan^{-1}(2x) \] ### Step 4: Differentiate \( y \) with respect to \( x \) Now we differentiate \( y \): \[ \frac{dy}{dx} = 2 \cdot \frac{d}{dx}(\tan^{-1}(2x)) \] Using the derivative of \( \tan^{-1}(u) \): \[ \frac{d}{dx}(\tan^{-1}(u)) = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] where \( u = 2x \) and \( \frac{du}{dx} = 2 \): \[ \frac{dy}{dx} = 2 \cdot \frac{1}{1 + (2x)^2} \cdot 2 = \frac{4}{1 + 4x^2} \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{4}{1 + 4x^2} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If y = sin^(-1) ((2x)/(1 + x^(2))), "then" (dy)/(dx) is equal to

If y=sin^(-1)x+sin^(-1)sqrt(1-x^(2)) , what is (dy)/(dx) equal to?

If y=sin^(-1)x+sin^(-1).sqrt(1-x^(2)) what is (dy)/(dx) equal to ?

If y=(x+1)/(x-1), then what is (dy)/(dx) equal to?

If y=(1+x^((1)/(4)))(1+x^((1)/(2)))(1-x^((1)/(4))) , then what is (dy)/(dx) equal to ?

If y=(1+x^(1//4))(1+x^(1//2))(1-x^(1//4)) , then what is (dy)/(dx) equal to ?

If y=sin ^(-1) ((2^(x+1))/( 1+4^(x))),then (dy)/(dx) =

If y=x^(x) , what is (dy)/(dx) at x = 1 equal to?

If y=sin ^(-1) ((3x +4 sqrt(1-x^(2)))/( 5)),then (dy)/(dx)=