Home
Class 14
MATHS
What is the derivative of xsqrt(a^(2)-x^...

What is the derivative of `xsqrt(a^(2)-x^(2))+a^(2)sin^(-1)(x/a)` ?

A

`sqrt(a^(2)-x^(2))`

B

`2sqrt(a^(2)-x^(2))`

C

`sqrt(x^(2)-a^(2))`

D

`2sqrt(x^(2)-a^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( f(x) = x \sqrt{a^2 - x^2} + a^2 \sin^{-1}\left(\frac{x}{a}\right) \), we will use the product rule and the chain rule of differentiation. ### Step-by-Step Solution: 1. **Identify the components of the function**: - Let \( u = x \) and \( v = \sqrt{a^2 - x^2} \) for the first term \( x \sqrt{a^2 - x^2} \). - The second term is \( a^2 \sin^{-1}\left(\frac{x}{a}\right) \). 2. **Differentiate the first term using the product rule**: - The product rule states that \( \frac{d}{dx}(uv) = u'v + uv' \). - Here, \( u' = \frac{d}{dx}(x) = 1 \) and \( v = \sqrt{a^2 - x^2} \). - To find \( v' \): \[ v' = \frac{d}{dx}(\sqrt{a^2 - x^2}) = \frac{1}{2\sqrt{a^2 - x^2}} \cdot (-2x) = \frac{-x}{\sqrt{a^2 - x^2}} \] - Now apply the product rule: \[ \frac{d}{dx}(x \sqrt{a^2 - x^2}) = 1 \cdot \sqrt{a^2 - x^2} + x \cdot \left(\frac{-x}{\sqrt{a^2 - x^2}}\right) \] \[ = \sqrt{a^2 - x^2} - \frac{x^2}{\sqrt{a^2 - x^2}} \] - Combine the terms: \[ = \frac{(a^2 - x^2) - x^2}{\sqrt{a^2 - x^2}} = \frac{a^2 - 2x^2}{\sqrt{a^2 - x^2}} \] 3. **Differentiate the second term**: - For the second term \( a^2 \sin^{-1}\left(\frac{x}{a}\right) \): \[ \frac{d}{dx}\left(a^2 \sin^{-1}\left(\frac{x}{a}\right)\right) = a^2 \cdot \frac{1}{\sqrt{1 - \left(\frac{x}{a}\right)^2}} \cdot \frac{1}{a} = \frac{a^2}{\sqrt{1 - \frac{x^2}{a^2}}} \cdot \frac{1}{a} \] \[ = \frac{a}{\sqrt{1 - \frac{x^2}{a^2}}} = \frac{a}{\sqrt{\frac{a^2 - x^2}{a^2}}} = \frac{a^2}{\sqrt{a^2 - x^2}} \] 4. **Combine the derivatives**: - Now, combine the derivatives of both terms: \[ f'(x) = \frac{a^2 - 2x^2}{\sqrt{a^2 - x^2}} + \frac{a^2}{\sqrt{a^2 - x^2}} = \frac{(a^2 - 2x^2) + a^2}{\sqrt{a^2 - x^2}} = \frac{2a^2 - 2x^2}{\sqrt{a^2 - x^2}} \] - Factor out the common factor: \[ = \frac{2(a^2 - x^2)}{\sqrt{a^2 - x^2}} \] 5. **Final result**: - Thus, the derivative of the function is: \[ f'(x) = 2\sqrt{a^2 - x^2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the derivative of sin2x

What is the derivative of |x-1| at x=2 ?

What is the derivative of |x-1| at x = 2?

Find the derivative of y=sin^(-1)(2xsqrt(1-x^2))

xsqrt(1+2x^(2))

Compute the derivative of f(x)=sin^(2)x

Compute the derivative of f(x)=sin^(2)x

Find the derivative of tan^(-1)(2x)/(1-x^(2))quad w.r.t sin^(-1)(2x)/(1+x^(2))

What is the derivative of f(x)=sqrt(1-x^(2)) with respect to g(x)=sin^(-1)x, where |x|ne1 ?