Home
Class 12
MATHS
If a function f(x) increases in the inte...

If a function `f(x)` increases in the interval `(a, b).` then the function `phi(x) = [f(x)]^n` increases in the same interval and `phi(x) != f(x)` if

A

`n=-1`

B

n=0

C

n=3

D

n=4

Text Solution

Verified by Experts

The correct Answer is:
C

`phi(x ) =[f(x)]^(n) rArr phi. (x) =n[f(x)^(n-1) f.(x)`
as f(x) is increasing function in (a, b) hence `f.(0) gt 0, AA x in (a, b)`
if `phi f(x)` is increasing function then
`n-1=2, n=3`
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=cos^(-1)x+x increases in the interval

The function f(x) = (x)/(log x) increases on the interval

The function f(x)=2log(x-2)-x^(2)+4x+1 increases in the interval

The function f(x) = x^2 is increasing in the interval

The function f(x)= tan^(-1)x +x increases in the interval

The function f(x)=x/(xlogx) increase on the interval

the function f(x)=(log x)/(x) is increasing in the interval