Home
Class 12
MATHS
The function f(x) = x^(3) - 3x is …….....

The function `f(x) = x^(3) - 3x` is ……..

A

Increasing in ` (-oo, -1) cup(1, oo)` and decreasing in `(-1,1)`

B

Decreasing in ` (-oo, -1) cup(1, oo)` and increasing in `(-1,1)`

C

Increasing in `(0, oo)` and decreasing in `(-oo, 0)`

D

Decreasing in `(0, oo)` and increasing in ` (-oo, 0)`

Text Solution

Verified by Experts

The correct Answer is:
A

`f(x)= x^(3)-3x`
`f.(x) =3x^(2)-3`
`=3(x^(2)-1)`
`f.(x) =3(x+1) (x-1)`
For increasing function
`f.(x) gt 0`
`x in (-oo, -1) cup (1, oo)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of c in Rolle's theorem for the function f(x) = x^(3) - 3x in the interval [0,sqrt(3)] is

The value of c in Rolle's theorem for the function f(x) = x^(3) - 3x in the interval [0,sqrt(3)] is

The function f(x) = x^(3) - 3x^(2) + 3x -100, x in R is:

For the function f(x) = 2 x ^(3) - 3x ^(2) - 12 x + 4 which of the following statement is correct

Show that the function f(x)= x^(3) - 3x^(2)+3x - 1 is an increasing function on R.

For the function f (x)= x^(3) - 3x + 7 , choose the correct option

Verify Rolle's theorem for the function f(x) = x^(3) + 3x^(2) - 24x -80 in the interval [-4,5] .

The function f(x) = 2x^(3) + 3x^(2) -12 x + 1 decreases in the interval

The function f(x)=x^(3)-3x^(2)+6 is an increasing funciton for :