Home
Class 12
MATHS
d/(dx) [Sec^(-1)e^(2x)]=?...

`d/(dx) [Sec^(-1)e^(2x)]=?`

A

`2/(sqrt(e^(4x)-1))`

B

`2/(e^(2x)sqrt(e^(4x)-1))`

C

`1/(sqrt(1-e^(4x)))`

D

`-1/(sqrt(1-e^(4x)))`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (d)/(dx) ["cosec"^(-1)x]_(x= -2)

[(d)/(dx) sec^(-1)x]_(x = -3) =…….

d/(dx) [e^(Sin^(-1)x+Cos^(-1)x)] = ? (Where |x| le 1 )

(d)/(dx) (e^(5x)) = …….

(d)/(dx) tan^(-1) (sec x - tan x) - Find

(d)/(dx) (e^(sin^(-1)x + cos^(-1) x))= ……. (|x| lt 1)

(d)/(dx ) ( e^( tan^(-1) x+ cot^(-1) x)) =……. : (x in R)

Differentiate the following w.r.t x: (i) e^(-x) (ii) sin (log x), x gt 0 (iii) cos^(-1) (e^(x)) (iv) e^(cos x)