Home
Class 12
MATHS
The position vectors of three vertices i...

The position vectors of three vertices in order of a parallelogram are respectively `hat(i)+hat(j)+hat(k),hat(i)+3hat(j)+5hat(k)` and `7hat(i)+9hat(j)+11hat(k)`, then find out the position vector of its fourth vertex.

A

`6(hat(i)+hat(j)+hat(k))`

B

`7(hat(i)+hat(j)+hat(k))`

C

`2hat(i)-4hat(k)`

D

`6hat(i)+8hat(j)+10hat(k)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If the position vector of the vertices of a triangle are hat(i)-hat(j)+2hat(k), 2hat(i)+hat(j)+hat(k) & 3hat(i)-hat(j)+2hat(k) , then find the area of the triangle.

If vec(A)=4hat(i)+nhat(j)-2hat(k) and vec(B)=2hat(i)+3hat(j)+hat(k) , then find the value of n so that vec(A) bot vec(B)

A vector equally inclined to the vectors hat(i)-hat(j)+hat(k) and hat(i)+hat(j)-hat(k) then the plane containing them is

Find the angle between vec(P) = - 2hat(i) +3 hat(j) +hat(k) and vec(Q) = hat(i) +2hat(j) - 4hat(k)

Find a unit vector perpendicular to both the vectors (2hat(i)+3hat(j)+hat(k)) and (hat(i)-hat(j)-2hat(k)) .

Let r=a+lambdal and r=b+mum br be two lines in space, where a= 5hat(i)+hat(j)+2hat(k), b=-hat(i)+7hat(j)+8hat(k), l=-4hat(i)+hat(j)-hat(k), and m=2hat(i)-5hat(j)-7hat(k) , then the position vector of a point which lies on both of these lines, is

The unit vactor parallel to the resultant of the vectors vec(A)=4hat(i)+3hat(j)+6hat(k) and vec(B)=-hat(i)+3hat(j)-8hat(k) is :-

Angle between the vectors vec(a)=-hat(i)+2hat(j)+hat(k) and vec(b)=xhat(i)+hat(j)+(x+1)hat(k)

If the angle between vec(A) = 2hat(i)+4hat(j)+2hat(k) and vec(B) =2hat(i) +hat(k) " is " 30^(@) , then find the projection of vec(B ) on A .

The position vectors of the points A and B are respectively hat i - hat j + 3 hat k and 3 hat i + 3 hat j + 3 hat k . The equation of the plane bar r. (5 hat i + 2 hat j - 7 hat k ) + 9 =0 Then points A and B.