Home
Class 12
MATHS
lim(xtooo)x(xsqrt(3)-1)=. . . . . . ....

`lim_(xtooo)x(xsqrt(3)-1)=`. . . . . . .

A

(a) `log3`

B

(b) `-log3`

C

(c) `log x`

D

(d) limit does not exist

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xtooo)(2x+3)/(x)= . . . . .

Evaluation of definite integrals by subsitiution and properties of its : int_(0)^(3)xsqrt(1+x)dx=........

lim_(xto1)cos^(-1)((1-sqrt(x))/(1-x))= .......

lim_(ntooo)(1+2+3+. . . +n)/(n^(2))= . . . . .

lim_(xrarr-1)(x^7+1)/(x^8-1) = ….. .

If f(3)=2 then lim_(xrarr2)f(x^2-1) = …........

If lim_(xtooo)((x^(2)+x+1)/(x+1)-ax-b)=4 , then

The value of lim_(xtooo)(sqrt(a^(2)x^(2)+ax+1)-sqrt(a^(2)x^(2)+1)),(agt0) is

lim_(x rarr-1) {x+x^(2)+x^(3)+..........+x^(10)} = ......