Home
Class 12
MATHS
lim(ntooo)(1+2+3+. . . +n)/(n^(2))= . ....

`lim_(ntooo)(1+2+3+. . . +n)/(n^(2))=` . . . . .

A

`1//2`

B

0

C

2

D

`oo`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Definite integration as the limit of a sum : lim_(ntooo)sum_(K=1)^(n)(K)/(n^(2)+K^(2))=......

Definite integration as the limit of a sum : lim_(ntooo)sum_(k=0)^(n)(n)/(n^(2)+k^(2))=..........

Definite integration as the limit of a sum : lim_(ntooo)sum_(r=1)^(n)(1)/(n)e^(r/(n))=.............

lim_(ntooo)(1^(2)+2^(2)+3^(2)+.....+n^(2))/(n^(3)) =........

Definite integration as the limit of a sum : lim_(ntooo)[(n!)/(n^(n))]^(1/n)=.........

Definite integration as the limit of a sum : lim_(ntooo)(1)/(n)+(1)/(n+1)+(1)/(n+2)+.......+(1)/(2n)

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

Definite integration as the limit of a sum : lim_(ntooo)(1^(p)+2^(p)+3^(p)+.......+n^(p))/(n^(p+1))=...........

Fundamental theorem of definite integral : If I_(n)=int_(0)^(pi/4)tan^(n)dx then lim_(ntooo)n(I_(n)+I_(n+2))=.......

lim _( x to 2) ( x^(n) - 2^(n))/( x - 2) = 32 then n = . . . . . , n in N