Home
Class 12
MATHS
If f'(x)=g'(x), then . . . . . . ....

If `f'(x)=g'(x)`, then . . . . . . .

A

`f(x)=g(x)+c`

B

`f(x)*g(x)=c`

C

`f(x)=g(x)`

D

`f(x)=c*g(x)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Function f and g defined on R-{0}rarrR as f(x)=x and g(x)=1/x" then "f.g(x) = ...... .

If f(x)=(a x^2+b)^3, then find the function g such that f(g(x))=g(f(x))dot

Let f:R->R and g:R->R be two one-one and onto functions such that they are mirror images of each other about the line y=a . If h(x)=f(x)+g(x) , then h(x) is (A) one-one onto (B) one-one into (D) many-one into (C) many-one onto

If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x)) is equivalent to

Let f(x)=x^2+xg'(1)+g''(2) and g(x)=f(1).x^2+xf'(x)+f''(x), then find f(x) and g(x).

If f : R rarr R , f(x) = [x] , g : R rarr R , g(x) = sinx , h : R rarr R , h(x) = 2x , then ho(gof) = ..........

If f(x)=sinx,g(x)=x^(2)andh(x)=logx. IF F(x)=h(f(g(x))), then F'(x) is

f'(x) = g(x) and g'(x) =-f(x) for all real x and f(5)=2=f'(5) then f^2 (10) + g^2 (10) is

Let f(x)= x^(2)+ (1)/(x^(2)) and g(x)= x- (1)/(x), x in R -{-1, 0,1} . If h(x)= (f(x))/(g(x)) then the minimum local value of h(x) is…….

g(x) = 1 + sqrt(x) and f(g(x)) =3 +2sqrtx+x then f(x) = ......