Home
Class 12
MATHS
d/(dx) [Tan^(-1)((x+a)/(1-ax))] =? (whe...

`d/(dx) [Tan^(-1)((x+a)/(1-ax))] =? ` (where `x in R ^(+) , a in R ^(+) , ax lt1` )

A

`(1)/(1+x^(2))`

B

`-(1)/(1+x^(2))`

C

`(a)/(1+x^(2))`

D

`(-a)/(1+x^(2))`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

d/(dx) [e^(Sin^(-1)x+Cos^(-1)x)] = ? (Where |x| le 1 )

(d)/(dx ) (tan^(-1)x + cot^(-1) x) = ……

(d)/(dx ) ( e^( tan^(-1) x+ cot^(-1) x)) =……. : (x in R)

(d)/(dx) tan^(-1) (sec x - tan x) - Find

(d)/( dx) [ sin^(-1) ""(x)/(a)] = . . . . . , a lt a and |(x)/(a)| lt 1

(d)/(dx) (tan^(n)x) = ……..

2 tan ( tan^(-1)(x)+ tan^(-1)(x^(3))) " where " x in R - {-1,1} is equal to

(d)/(dx) (sin^(-1)x + cos^(-1) x)= …….. (|x| lt 1)

( d)/(dx) [ x^(3) ( cos ^(-1) x + sin ^(-1) x) ] = . . . . . , | x| lt 1