Home
Class 12
MATHS
y=a^(x), then y(n)= . . . . . . . . . . ...

`y=a^(x)`, then `y_(n)=` . . . . . . . . . . . `,agt0, x in R`.

A

`a^(x)(loga)^(n)`

B

`(a^(x))^(n)*loga`

C

`na^(x)*loga`

D

`a^(nx)*(loga)^(n)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

y= e^(3x + 7) " then " y_(n) (0)= ……..

x+y le 9. y gt x, x ge 0

A function f : R to R satisfies the equation f(x+y) = f (x) f(y), AA x, y in R and f (x) ne 0 for any x in R . Let the function be differentiable at x = 0 and f'(0) = 2. Show that f'(x) = 2 f(x), AA x in R. Hence, determine f(x)

If (a^(m))^(n)=a^(m^(n)) , then express m in the terms of n is (agt0, ane0, mgt1, ngt1)

If sets A and B are defined as A= {(x, y)|y = (1)/(x), x ne 0 in R}, B= {(x, y)| y= -x, x in R} . Then,

Let y_(n)(x) = x^(2) + (x^(2))/(1+x^(2))+(x^(2))/((1+x^(2))^(2))+......(x^(2))/((1+x^(2))^(n-1))and y(x) = lim_(n rarr oo) y_(n) (x) . Discuss the continuity of y_(n)(x)(n = 1, 2, 3....n) and y(x) "at x" = 0

Let f be a function satisfying f(x+y)=f(x) + f(y) for all x,y in R . If f (1)= k then f(n), n in N is equal to

If X and Y are two sets such that n ( X ) = 17, n ( Y ) = 23 and n ( X ∪ Y ) = 38 , find n ( X ∩ Y ) .

R= {(x, y): x in N, y in N and x + y = 10} . Write domain and range of R.

R= {(x,y): x, y in N, x + y= 8} . Find the domain and range of R.