Home
Class 12
MATHS
If f(x)=x^(2)+ax+5 is increasing functio...

If `f(x)=x^(2)+ax+5` is increasing function in (2, 3), then the minimum value ofa is . . . . . . . . . `,a in R`.

A

4

B

`-2`

C

`-4`

D

2

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) =x^3/3+x^2/2+ax +b,AAx inR. If (x) is one one function then the minimum value of a is ........

Show that f(x)=x^(3)-6x^(2)+12x-18 is an increasing function on R.

If f: [(2,oo) rarr R be the function defined by f(x) =x^(2) - 4x +5 , then the range of f is ...........

The function f: R rarr R ,f(x) = 5x+7 then the function f is ..........

If f(x)=x^(3)+ax^(2)+bx+5sin^(2)x, AA x in R is an increasing function, then …………..

If f(x)=x^3+3x^2+4x+ bsinx+ c cosx AA x in R is a one-one function then the value of b^2 + c^2 is

f(x)=x^(2)+4x+5 has minimum value ………… (x in R)

The local minimum value of f(x)=x^(2)+4x+5 is ………..

Let f={(x, x^2/(1+x^(2))), x in R} be a function from R into R. Determine the range of f.

Let f:R rarr R and f(x)=(3x^(2)+mx+n)/(x^(2)+1) . If the range of this function is [-4,3], then the value of (m^(2)+n^(2))/(4) is ….