Home
Class 12
MATHS
lim(ntooo)r^(n)=0,then r=...........

`lim_(ntooo)r^(n)=0`,then r=........

A

`5//4`

B

1

C

`4//5`

D

2

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Fundamental theorem of definite integral : If I_(n)=int_(0)^(pi/4)tan^(n)dx then lim_(ntooo)n(I_(n)+I_(n+2))=.......

If {:((n),(r)):}=(n!)/(k), then K =.......

Definite integration as the limit of a sum : lim_(ntooo)[(n!)/(n^(n))]^(1/n)=.........

Definite integration as the limit of a sum : lim_(ntooo)(1^(p)+2^(p)+3^(p)+.......+n^(p))/(n^(p+1))=...........

""_(n)P_r+((n),(r))=.........

Definite integration as the limit of a sum : lim_(ntooo)sum_(r=1)^(n)(1)/(n)e^(r/(n))=.............

lim_(ntooo)(1^(2)+2^(2)+3^(2)+.....+n^(2))/(n^(3)) =........

sum_(r=0)^(n).^(n)C_(r)4^(r)=..........

((n),(r)) = (""^(n)P_(r))/(K), then K = ......

Definite integration as the limit of a sum : lim_(ntooo)(1)/(n)sum_(r=n+1)^(2n)log(1+(r)/(n))=.............