Home
Class 12
MATHS
lim(ntooo)(1^(2)+2^(2)+3^(2)+.....+n^(2)...

`lim_(ntooo)(1^(2)+2^(2)+3^(2)+.....+n^(2))/(n^(3))`=........

A

`2//3`

B

`1//6`

C

`1//2`

D

`1//3`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Definite integration as the limit of a sum : lim_(ntooo)(1^(p)+2^(p)+3^(p)+.......+n^(p))/(n^(p+1))=...........

Definite integration as the limit of a sum : lim_(ntooo)[(n)/(1+n^(2))+(n)/(4+n^(2))+(n)/(9+n^(2))+.........+(n)/(2n^(2))]=......

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

Definite integration as the limit of a sum : lim_(ntooo)[(1+(1)/(n^(2)))(1+(2^(2))/(n^(2)))(1+(3^(2))/(n^(2)))......(1+(n^(2))/(n^(2)))]^(1/n)=.......

Definite integration as the limit of a sum : lim_(ntooo)[(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+.........+(1)/(8n)]=........

Definite integration as the limit of a sum : lim_(ntooo)(1)/(n)sum_(r=n+1)^(2n)log(1+(r)/(n))=.............

P(n) : 1^(2) + 2^(2) + 3^(2) + .......+ n^(2) = n/6(n+1) (2n+1) n in N is true then 1^(2) +2^(2) +3^(2) + ........ + 10^(2) = .......

lim_(ntooo)r^(n)=0 ,then r=........

Definite integration as the limit of a sum : lim_(ntooo)sum_(k=0)^(n)(n)/(n^(2)+k^(2))=..........

Definite integration as the limit of a sum : lim_(ntooo)[(1)/(n^(2))sec^(2)""(1)/(n^(2))+(2)/(n^(2))sec^(2)""(4)/(n^(2))+.......+(1)/(n)sec^(2)1] a. 'tan1 b. 1/2tan1 c. 1/2sec1 d. 1/2cosec 1