Home
Class 12
MATHS
(d)/(dx)[log(e)e^(sin(x^(2)))]=.........

`(d)/(dx)[log_(e)e^(sin(x^(2)))]=`......

A

2cosx

B

`2xcos(x^(2))`

C

`2cos(x^(2))`

D

`2x.cosx`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx) (log_(5) x^(2)) = ……..

(d)/(dx) (e^(sin^(-1)x + cos^(-1) x))= ……. (|x| lt 1)

Prove that, (d)/(dx) ["log" (x^(2) + x + 1)/(x^(2) -x + 1) + (2)/(sqrt3) "tan"^(-1) (sqrt3x)/(1-x^(2))]= (4)/(x^(4 ) + x^(2) + 1)

d/(dx) [Sec^(-1)e^(2x)]=?

(d)/(dx) (e^(5x)) = …….

The degree of the differential equation (d^(2)y)/(dx^(2))+3((dy)/(dx))^(2)=x^(2)log((d^(2)y)/(dx^(2))), is

d/(dx) [e^(Sin^(-1)x+Cos^(-1)x)] = ? (Where |x| le 1 )

(d)/(dx ) ( e^( tan^(-1) x+ cot^(-1) x)) =……. : (x in R)