Home
Class 12
MATHS
f(x)=x^(3)-6x^(2)-36x+2 is decreasing fu...

`f(x)=x^(3)-6x^(2)-36x+2` is decreasing function ,then `x epsilon` ..........

A

`(-oo,-2)`

B

`(-2,6)`

C

`(6,oo)`

D

None of them

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that f(x)=x^(3)-6x^(2)+12x-18 is an increasing function on R.

Find the intervals in which function f given by f(x)=2x^(3)-3x^(2)-36x+7 is (a) increasing (b) decreasing

Find the intervals in which the function f given by f(x)=4x^(3)-6x^(2)-72x+30 is (a) Increasing (b) Decreasing.

If f(x)=x^(3)+ax^(2)+bx+5sin^(2)x, AA x in R is an increasing function, then …………..

f:(2,4)rarr(1,3),f(x) = x - [(x)/2] , where [.] is a greatest integer function then f^(-1)(x) = ......

The function f(x)=(2x^(2)-1)/(x^(4)), x gt 0 , decreases in the interval …………. .

The function f:[0,3] to [1,29], defined by f(x)=2x^(3)-15x^(2)+36x+1 is (a)one-one and onto (b)onto but not one-one (c)one-one but not onto (d)neither one-one nor onto

If f:R rarr [pi/6,pi/2], f(x)=sin^(-1)((x^(2)-a)/(x^(2)+1)) is an onto function, the set of values a is

Prove that the function f(x)=2|x-1|+3|x-4| is decreasing in the intrerval (2, 4).

f(x)=x^(x) decreases in ……….