Home
Class 12
MATHS
If | vec x| = 13 then direction angles ...

If ` | vec x| = 13` then direction angles of `vec(x)` are `cos^-1(3/13) , cos^-1(4/13) and cos^-1(12/13)`

A

` 3 hat(i) + 4 hat(j) - 12 hat(k)`

B

` 3 hat(i) + 4 hat(j) + 12 hat(k)`

C

`3 hat(i) - 4 hat(j) + 12 hat(k)`

D

` 3 hat(i) - 4 hat(j) - 12 hat(k)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^-1 (12/13)+cos^-1(4/5)+tan^-1(63/16)=pi

The value of tan{sin^(-1)(3/5)+cos^(-1)(5/13)} is _____

Show that : sin^(-1)(5/13)+cos^(-1)(3/5)=tan^(-1)(63/16) .

Prove the following : sin^(-1)(12/13)+cos^(-1)(4/5)+tan^(-1)(63/16)=pi

Prove that: cos^(-1)(12/13)+sin^(-1)(3/5)=sin^(-1)(56/65)

Find the values of each of the following : tan[sin^(-1)(3/5)+cos^(-1)(5/13)]

Prove : 3cos^(-1)x=cos^(-1)(4x^(3)-3x),x in[1/2,1]

cos 6x = 32 cos ^(6) x - 48 cos ^(4) x + 18 cos ^(2) x-1

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

Prove that : "cos"^(-1)4/5+"cos"^(-1)12/13="cos"^(-1)33/65