Home
Class 12
MATHS
For A(1, -2, 4), B(5,-1,7),C(3,6,-2), D(...

For `A(1, -2, 4), B(5,-1,7),C(3,6,-2), D(4,5,-1)`, the projection of `vec(AB)" on " vec(CD)` is ______

A

`(2sqrt3, -2sqrt3, 2sqrt3)`

B

`(3)/(13)(4,1,3)`

C

`(1,-1,1)`

D

`(2, -2,2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

A(1, -2, 4), B(5, -1, 7), C(3, 6, -2) and D(4, 5, -1) are given vectors. Then the projection of vec(AB) on vec(CD) is ……………

If A(3,2,-4),B(4,3,-4),C(3,3,3) and D(4, 2,-3) are given then find the projection of vec(AD) on vec(AB)xx vec(AC) .

For the vectors A(-1,-2,3) and B(1,2,-1) the direction cosines of vec(AB) are ……………

If A=(0,1)B=(1,0),C=(1,2),D=(2,1) , prove that vec A B= vec C Ddot

If A, B, C and D are the points with position vectors hati+hatj-hatk,2hati-hatj+3hatk,2hati-3hatk and 3hati-2hatj+hatk respectively, then find the projection of vec(AB) along vec(CD) .

If the coordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (-4, 3, -6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD.

vec(a)=hati+hatj+sqrt(2)hatk,vec(b)=b_(1)hati+b_(2)hatj+sqrt(2)hatk and vec( c )=5hati+hatj+sqrt(2)k are three vectors. The projection of the vector vec(b) on vec(a) is |vec(a)| . If vec(a)+vec(b) is perpendicular to vec( c ) then |vec(b)| = ...........

A=[{:(2,3,-1),(1,-2,4):}]andB=[{:(1,4),(2,5),(-1,3):}] then verify that (AB) =B'A.

Find x such that the four points A(3, 2, 1), B(4, x, 5), C(4, 2, -2) and D(6, 5, -1) are coplanar.

A= {1, 2, 3, 4, 5}, B= {1, 3, 5, 6}, C= {1, 2, 3} , then find the following sets. B- C