Home
Class 12
MATHS
Function f(x)= {((log(2)2x)^(log(x)8),x ...

Function `f(x)= {((log_(2)2x)^(log_(x)8),x ne 1),((k-1)^(3),x=1):}` is continuous at x=1, then k= ____

A

A `e+1`

B

B `e^(1//3)`

C

C `e^(3)`

D

D `e-1`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = {{:((log(1+2ax)-log(1-bx))/(x)",",x ne 0),(" "k",",x = 0):} is continuous at x = 0, then k is equal to

f(x)= {((2^(x + 2)-16)/(4^(x)-16)",",x ne 2),(k",",x=2):} f(x) is continuous at x=2 then find k

f(x)= {((tan 2x)/(x)",",x ne 0),(K",",x=0):} If a function f is continuous at x=0 then find k.

If f(x)= {{:(,(x log cos x)/(log(1+x^(2))),x ne 0),(,0,x=0):} then

If f (x) =[((1-cos kx)/(x^2) : x ne 0),(8 , x=0)] is continues at x=0 , then K=……

If f (x) =[((1-cos kx)/(x^2) : x ne 0),(8 , x=0)] is continues at x=0 , then K=……

f(x)= {((1- cos 4x)/(8x^(2))",",x ne 0),(k",",x= 0):} . If the function f(x) is continuous at x= 0, then find k.

Find the domain f(x)=(log_(2x)3)/(cos^(- 1)(2x-1)

Find the domain f(x)=log_(100x)((2 log_(10) x+1)/-x)